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Abstract 1 

In water rails Rallus aquaticus, northern and eastern populations are migratory while southern 2 

and western populations are sedentary. Few details are known about the annual cycle of this 3 

elusive species. We studied movements and breeding in water rails from southernmost 4 

Norway where the species occurs year-round. Colour-ringed wintering birds occurred only 5 

occasionally at the study site in summer, and vice versa. Geolocator tracks revealed that 6 

wintering birds (n = 10) migrated eastwards in spring to breed on both sides of the Baltic Sea, 7 

whereas a single breeding bird from the study site wintered in N Italy. Ambient light records 8 

of geolocator birds further indicated that all but one incubated 2–4 clutches per season. By 9 

combining information on incubation and movement, we found evidence for itinerant 10 

breeding in three individual birds: After a first breeding attempt (one did not incubate), all 11 

moved 129–721 km to breed again. This behaviour is rarely recorded in birds and was 12 

unexpected because the water rail is described as monogamous with both parents caring for 13 

eggs and chicks. The study greatly improves our knowledge about the annual cycle and 14 

reproduction in water rails. However, more studies are warranted to evaluate the generality of 15 

our findings and causes of breeding itinerancy. 16 

 17 

  18 
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Introduction 19 

Birds are known to show both intra-population differences in migratory propensity (partial 20 

migration; Lundberg 1988, Chapman et al. 2011) and inter-population differences which 21 

produce leap-frogging, parallel, crosswise or chain migration patterns (Rappole 2013, 22 

Chapman et al. 2014). While seasonal migration is common, movements within seasons are 23 

rarely documented. Such itinerancy (Moreau 1972) is often explained by seasonally and 24 

spatially fluctuating food availability (Thorup et al. 2017, Koleček et al. 2018). During 25 

breeding it might also result from mate searching in polygamous birds (Rohwer et al. 2009, 26 

Kempenaers & Valcu 2017). Evidence for breeding itinerancy exist in both tropical and 27 

temperate birds that move over long (>10 km) distances (Newton 2008, Rohwer et al. 2009, 28 

Baldassarre et al. 2019, Cooper & Marra, in press). 29 

 30 

The water rail Rallus aquaticus is widespread and common in the Palearctic region (Taylor & 31 

Christie 2018). Yet, due to the species’ secretive behaviour which hamper field studies, many 32 

aspects of water rail ecology are poorly known. For instance, even though migration distance 33 

of water rails increases towards north and east in Europe (Flegg & Glue 1973, De Kroon 34 

1984, Lugg et al. 2018), the main wintering areas are unknown in most populations and 35 

annual schedules are only fragmentarily described. Since the species is regarded as being 36 

territorial, monogamous, and bi-parental (Taylor & Christie 2018), we would predict it to 37 

show long residency during the breeding season. However, as breeding itinerancy is difficult 38 

to observe, and possibly occur in some other rallids (Seifert et al. 2016), it might have been 39 

previously overlooked in water rails. 40 

 41 

South Norway constitutes the north-western limit of the water rail’s breeding distribution 42 

(<170 pairs; Shimmings & Øien 2015, Taylor & Christie 2018). The species is also found in 43 
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winter along the South-Norwegian coast, although numbers fluctuate with weather conditions 44 

(Lislevand & Kjøstvedt 2005). There is no information about migratory habits of water rails 45 

from Norway, as only four ring recoveries exist so far (all foreign birds; Stavanger Museum 46 

2020). Some authors have speculated that Norwegian water rails are resident (Bakken et al. 47 

2003) or that the winter population, at least partly, consists of migrants that breed further east 48 

(Mork 1994). In any case, this would differ from other Scandinavian water rail populations 49 

which migrate towards SW (Fransson et al. 2008, Saurola et al. 2013). 50 

 51 

We studied the seasonal occurrence and migration patterns of water rails in southernmost 52 

Norway by using observations of individually marked birds and geolocator tracking. 53 

From this, we describe detailed and complete annual schedules in this species for the first 54 

time. Specifically, we tested the hypotheses that 1) migrants from eastern breeding 55 

populations are wintering in Norway, and 2) Norwegian breeding birds are sedentary. Finally, 56 

by combining migration tracks and data on incubation behaviour derived from geolocators, 57 

we tested if water rails are stationary during breeding, as predicted from current knowledge of 58 

their reproductive ecology. 59 

 60 

Methods 61 

General field methods 62 

Field work took place at Øreslandskilen near Lillesand, S Norway (58°10' N, 8°14' E), a small 63 

wetland (~2 ha) largely covered by reed (Phragmites australis). Colour ringing and re-64 

sightings of marked birds were done between 2004 and 2020 (Table 1). We trapped birds by 65 

using cage traps baited with oatmeal. To ease the monitoring of birds we cut the reed in five 66 

stretches measuring 50–80 cm x 30–50 m. These open areas were distributed in different parts 67 

of the reedbed. About 3–4 times per week we here put out oatmeal for the rails (approx. 1 kg 68 
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each time) from late September to April. Food was also provided in summer but at a less 69 

regular basis. Birds were ringed with a metal ring and a colour ring on one leg, and three 70 

colour rings on the other. Sex and age were determined as described by Demongin (2016). Of 71 

262 ringed birds, 226 (excluding three local juveniles) were trapped between 1st September 72 

and 31 March, wherein > 70% (n = 162) were captured in November and December (median 73 

= 26 November, inter-quartile range = 7 November–17 December; n = 226). The proportions 74 

of males and females were similar in the non-breeding period (males, n = 93; females, n = 75 

110). Moreover, 78% (144/185) of birds with known age during winter were ringed as 1y/2y, 76 

whereas all but two birds from summer months were local juveniles. 77 

 78 

Between October and May each year one observer (SR) checked the area for colour ringed 79 

water rails for 1–3 hours c. 3–4 times a week. If birds were present in summer (e.g. as 80 

indicated by tracks on the ground) we made 1–2 checks per week lasting c. 30–60 min each. 81 

To calculate return rates between winters, we only included birds still present in March of the 82 

first year to avoid counting birds that died or only visited the area briefly (Table 1).  83 

 84 

Geolocators  85 

Geolocators (Intigeo-C65; Migrate Technology Ltd, UK) were attached to a darvic ring which 86 

replaced one of the colour rings. The device weighed about 1.3 g, or approx. 1% of the body 87 

mass (males: 158.0 ± 16.2 g, n = 9; females: 135.7 ± 16.1 g, n = 14). We deployed 88 

geolocators in January–March 2014 (n = 6) and 2015 (n = 17). In addition, single birds were 89 

tagged in September 2015 (a local breeding male) and in April 2016. In the following year, 90 

we successfully retrieved geolocators from the September bird and 10 of 23 winter birds (7 91 

females, 3 males). The return rate in winter (43%) is comparable with that of rails which were 92 

only colour ringed (Table 1). Two males were aged 3y+, all others were 2y. Except for two on 93 



5 
 

tibia, all loggers were mounted on the tarsus. In one case the logger apparently caused slight 94 

skin abrasion on the leg, but without affecting locomotion. Returning wintering birds did not 95 

differ from others in body mass (returning: 138.9 g ± 12.5, n = 10; non-returning: 152.1 g ± 96 

20.4, n = 14; t = 0.81, df = 22, p = 0.08), nor did return rates differ between sexes (n 97 

females/males returned: 7/3; not returned: 6/7; Fischer’s exact test: p = 0.40). 98 

 99 

Data and analyses 100 

Analyses of movements and annual schedules were performed in R (R Core Team 2018). 101 

Means are reported ± SD and tests are two-tailed (alpha = 0.05). We used the R-package 102 

'TwGeos' to define sunrise and sunset times from geolocator data and distinguished between 103 

movement and stationary periods using the ‘invChanges’ function from the R package 104 

‘GeoLight’, version 2.0.1 (Lisovski and Hahn 2012). We then modelled individual migration 105 

tracks using the R-package SGAT (Lisovski et al. 2020). To this end, we used the ‘group 106 

threshold model’ and allowed birds to move in any direction, but stationary sites could not be 107 

located in the sea. The behavioural model was assumed to follow a gamma distribution (shape 108 

= 2.2, scale = 0.08). The twilight model was calibrated by ‘in-habitat calibration’, using light 109 

data recorded while the bird was at the breeding site (Lisovski et al. 2012). The resulting 110 

median solar zenith angles ranged between 93.3 and 94.6 for individual birds (mean = 94.2, n 111 

= 11). For the initial path, we extrapolated latitudinal positions during the equinox periods by 112 

setting the tolerance of solar declination of up to 9°. We initiated the model by drawing 1000 113 

initial samples and then tuned the model a total of five times. When reporting speed we define 114 

‘travel’ as movement between stationary periods, whereas ‘migration’ also includes stationary 115 

periods. For individual migration data and estimated location coordinates (medians with 95% 116 

CI), please see the electronic suppl. material, Appendix S1. 117 

 118 
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In water rails, both sexes incubate clutches of 6–11 eggs for 19–22 days, and care for the 119 

precocial and nidifugous young for 20–30 days (Taylor & Christie 2018). We used light 120 

intensity recordings to infer incubation behavior as light levels rapidly shift between darkness 121 

and high light intensities when the bird alternates between incubation/brooding (shading the 122 

logger) and foraging periods off the nest. We adopted the approach from Gosbell et al. (2012) 123 

to derive incubation episodes. First, we quantified darkness as light intensity that did not 124 

exceed 5% of maximum light intensity ever recorded by the logger in question. Second, 125 

incubation was inferred if there was darkness on the light sensor for > 5% of daylight periods. 126 

If such a pattern occurred for several consecutive days, it was interpreted as a breeding 127 

attempt. Incubation periods lasting for 21 days or more (Cramp & Simmons 1980) were taken 128 

to indicate successful breeding. The migration data set is available upon request from the 129 

MoveBank data repository (project id to be entered here). 130 

 131 

Results 132 

We confirmed breeding at the study site in 6 of 16 years, but only a single pair each year. The 133 

number of wintering birds present at the site varied between 0 and 34 per year (mean = 18.8 ± 134 

10.2, n = 16). Overall, 57% (163/282) were still present in March, and 57% of these (76/134) 135 

returned in the following winter (Table 1). Wintering birds were only rarely observed during 136 

the breeding season, and vice versa: 1) a wintering male which remained to breed in the study 137 

area, 2) a wintering female that after a long period of absence suddenly re-appeared on 23 138 

July (stayed for 3 days), and 3) two young from a local nest that stayed until their first spring. 139 

In addition, a male breeding five seasons in a row wintered in the area in the last year.  140 

 141 

Geolocator tracks (Figure 1, Table 2, Appendix S1) showed that wintering birds invariably 142 

moved eastwards in spring (mean distance = 1153 ± 733 km, n = 10) to breed in S Sweden (n 143 
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= 4; Figure 1a, c) or in E Baltic (n = 6, Figure 1b, c). Spring migration started 13 March–19 144 

April (median = 29 March, n = 10). Birds either moved continuously (n = 6) or stopped 1–3 145 

times for 3–19 days (n = 4) and arrived at breeding sites between 15 March and 21 May 146 

(median = 14 April, n = 10, Table 2). We recorded at least one full incubation period in all but 147 

one of the geolocator birds, starting between 11 April and 2 June (median = 10 May, n = 9; 148 

Figure 2). Birds incubated for two (n = 4), three (n = 4) or four (n = 1) periods (Figure 2) and 149 

most (7/9) finished egg care by August (median = 14 July; Figure 2). Autumn migration 150 

commenced between 8 August and 2 November (median = 9 October, n = 10), and birds 151 

either returned directly to Norway (n = 4) or stopped over once (n = 5) or twice (n = 1) for 5–152 

65 days (median = 20 days, n = 7). They arrived 17 September–17 November (median = 24 153 

October, n = 10). Birds that stopped over during migration sometimes took considerable 154 

detours from a more direct route to/from the breeding area (Figure 1b, c). In contrast to 155 

wintering birds, the local breeder from the study area (a 2y male) flew southwards in autumn 156 

to winter in N Italy (Figure 1d). It left the breeding area 4 October, stopped over once (15 157 

days) and reached the wintering area 2 November. Northbound migration commenced 129 158 

days later (10 March) and after a single stop (15 days) it returned to the breeding site 28 159 

March. 160 

 161 

We found evidence for breeding itinerancy in three water rails (Figure 1c, Figure 2). First, a 162 

2y female which did not seem to incubate at all (D-2014) first settled in W Russia on 19 163 

April. On 11 June she moved westwards to Estonia (386 km from previous site) and remained 164 

there until autumn. Second, a male (E-2014) first settled at the border between Russia and SE 165 

Finland where he incubated for 24 days. He left this area on 3 June and moved 129 km 166 

southwards where light patterns showed two brief incubation periods of 4 and 7 days. Finally, 167 

a female (H-2015) initially settled in S Sweden (31 March) and incubated for 23 days. 168 
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Thereafter she travelled 721 km further east to the border between SW Russia and N Belarus 169 

(arrived 11 June) where she incubated another clutch for 6 days. 170 

 171 

Discussion 172 

All 11 geolocator tracks clearly showed that the water rails were seasonal migrants, and this 173 

conclusion was largely supported by site occupancy of ringed birds. Water rails wintering in 174 

Norway indisputably breed in the Baltic region, as hypothesized by Mork (1994). In contrast, 175 

a single Norwegian breeding bird spent the winter in N Italy. These results deviate from ring 176 

recoveries of European water rails which primarily show migration along a SW-NE axis 177 

(Fransson et al. 2008, Saurola et al. 2013, Lugg et al. 2018). However, since sample sizes are 178 

small, especially for locally-breeding individuals, it is uncertain how well the geolocator 179 

results reflect the general migratory habits of Norwegian water rails. In fact, our observations 180 

of colour ringed birds showed that parts of the breeding population are also sedentary. It is 181 

possible that the proportion of non-migratory birds is higher than we recorded, since any 182 

individuals wintering on neighbour localities would have gone undetected.  183 

 184 

Contrary to our prediction, we found evidence for breeding itinerancy in three of ten water 185 

rails. Due to the restricted sample size one may not easily generalize about how common this 186 

behaviour is, but the species is known to often raise several broods per season (Cramp & 187 

Simmons 1980) which is a prerequisite for breeding itinerancy. The factors influencing 188 

movement decisions within the breeding season are entirely unknown, but itinerancy might be 189 

driven by fluctuating habitat suitability (Newton 2008). The advancement of spring along a 190 

latitudinal gradient could cause such fluctuations but is unlikely in our case since all tracked 191 

birds nested at similar latitudes. However, the wetland habitats where rails are breeding might 192 
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dry up over the season, perhaps sometimes making it adaptive to pursue better breeding 193 

conditions elsewhere (Seifert et al. 2016). 194 

 195 

Incubation periods of first clutches in itinerant water rails were apparently complete (24 and 196 

23 days; Figure 2), so movements were not likely triggered by nest failures. Yet, itinerant 197 

birds left their broods before the young were independent, i.e. 20–30 days after hatching 198 

(Figure 2; Taylor & Christie 2018). Although brood losses could not be entirely excluded, 199 

itinerant breeding in this species might perhaps also be explained by brood desertion and 200 

polygamy. Detailed studies of breeding behaviour in water rails would be useful to see if key 201 

aspects of the species’ breeding system, e.g. the duration of pair bonds and parental care, are 202 

more flexible than indicated in the general literature (Cramp & Simmons 1980, Taylor & 203 

Christie 2018). This may, indeed, be the case as between-individual variation in nest 204 

attentiveness was recently shown to affect home range sizes in water rails (Jedlikowski & 205 

Brambilla 2017). 206 

 207 

We conclude that Norwegian water rails exhibit a rather complex migration system, including 208 

itinerant breeding. Although our results considerably improve the knowledge about the water 209 

rail’s basic ecology, they also call for further investigation of both migration and breeding 210 

behaviour in this elusive bird. Breeding itinerancy might blur population limits, perhaps 211 

contributing to the low degree of genetic structuring among European water rail populations 212 

(Tavares et al. 2010, Stermin et al. 2014). As their numbers are currently declining globally 213 

(BirdLife International 2020), improved information about migration in water rails might 214 

have important implications for the species’ future conservation. 215 

 216 
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Figure legends. 348 

 349 

Figure 1. Migration tracks of water rails from the study site in Norway: (a) birds breeding in 350 

Sweden (n = 3), (b) birds breeding in the Eastern Baltic (n = 4), (c) itinerant birds (n = 3; sites 351 

are numbered consecutively), and (d) a local breeding bird (n = 1). Stationary sites are shown 352 

as medians with their 95% CI. 353 

 354 

Figure 2. Incubation in 10 water rails reflected by light traces of geolocators. Curves show 355 

the percentage of darkness during daytime recordings (horizontal grey dotted lines designate 356 

50%). Patterns outside the breeding sites are shown by black dashed lines, blue lines show 357 

patterns at breeding sites. Light traces at second sites are shown in red for breeding itinerant 358 

birds. Incubation periods are indicated by a rise in the percentage of darkness/day. Estimated 359 

incubation periods are indicated above each curve with triangles showing the date incubation 360 

started. The last recorded dates of incubation for incomplete incubation periods (< 21 days of 361 

incubation) are indicated by a short vertical line, and circles show estimated hatching dates.   362 

  363 
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Table 1. The number of colour-ringed water rails present at the study site each winter in the 364 

years 2004–2020. Only birds identified by colour rings are included and separate numbers are 365 

given during winter months (Dec–Feb) and March. Total return rates exclude bird numbers 366 

present in the previous winter for years when return rates are unknown.  367 

 

Winter 

n  

total 

n  

March 

n  

returning 

%  

Returning 

2004–2005 10 10 6 60 

2005–2006 20 4 NA NA 

2006–2007 NA 0 0 0 

2007–2008 5 5 5 100 

2008–2009 22 18 8 44 

2009–2010 33 0 0 0 

2010–2011 9 0 0 0 

2011–2012 0 0 0 0 

2012–2013 17 0 0 0 

2013–2014 6 6 5 83 

2014–2015 24 20 8 40 

2015–2016 32 26 17 65 

2016–2017 25 16 8 50 

2017–2018 34 16 12 75 

2018–2019 18 17 7  41 

2019–2020 27 25 NA NA 

Total 282 163 76 57 

368 



18 
 

Table 2. Migration in water rails wintering along the coast of southernmost Norway and breeding in Sweden (n = 4) or the Baltic and 

Russia (n = 6). Migration, travel and stopover periods are given in days. A female which did not seem to incubate was excluded from 

estimates of breeding-related variables. In cases of breeding itinerancy, the time at the breeding site is the sum of two breeding events. 

Distances (orthodromic) are given in km and speed in km/day. Mean values are given ± SD.  

 Females (n = 7) Males (n = 3) All (n = 10) 

 

Spring migration  

   

Departure date (median) 19 Mar–19 Apr (29 Mar) 13 Mar–19 Apr (29 Mar) 13 Mar–19 Apr (29 Mar) 

Travel time  1.4–6.9 1.5–5.6 1.4–6.9 

n stopovers  0–2 0–3 0–3 

Total stopover time  0–22.4 0–27.5 0–27.5 

Total migration time 1.4–27.3  1.5–32.7 1.4–32.7 

Migration distance 984 ± 506 1433 ± 1148 1119 ± 715 

Travel speed  287 ± 82   322 ± 159 298 ± 102 

Migration speed 271 ± 177 129 ± 79 228 ± 164 
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Breeding 

   

Arrival date (median) 21 Mar–26 Apr (15 Apr) 15 Mar–21 May (13 Apr) 15 Mar–21 May (14 Apr) 

First incubation date (median) 26 Apr – 16 May (11 May) 11 Apr – 2 Jun (2 May) 11 Apr – 2 Jun (10 May) 

n days breeding site (median) 115–207 (171) 151–190 (190) 115–207 (171) 

 

Autumn migration 

   

Departure date  (median) 8 Aug–2 Nov (9 Oct) 20 Sept–22 Oct (19 Oct) 8 Aug–2 Nov (9 Oct) 

Travel time 1.6–5.2 1.5–4.6 1.5–5.2 

n stopovers 0–1 0–2 0–2 

Sum stopover time  0–65.1 0–19.4 0–65.1  

Total migration time 1.6–68.5  1.5–24.1 1.5–68.5 

Migration distance  1059 ± 478 1391 ± 1073 1158 ± 659 

Travel speed 306 ± 74 354 ± 165 343 ± 121 

Migration speed 149 ± 149 156 ± 59 151 ± 125 
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Figure 1.  
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Figure 2.  
 

 

 

 

  


	[2021-2] Water_rail_migration_REVISED_Frontpage.pdf
	[2021-2] Water_rail_migration_REVISED_final.pdf
	[2021-2] Figures.pdf

