Journal article Open Access

Adaptive clustering-based hierarchical layout optimisation for large-scale integrated energy systems

Guo, Hui; Shi, Tianling; Wang, Fei; Zhang, Lijun; Lin, Zhengyu


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">power distribution reliability</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">optimisation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">distributed power generation</subfield>
  </datafield>
  <controlfield tag="005">20210318002721.0</controlfield>
  <controlfield tag="001">4610207</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Shanghai University</subfield>
    <subfield code="a">Shi, Tianling</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Shanghai University</subfield>
    <subfield code="a">Wang, Fei</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Shanghai University</subfield>
    <subfield code="a">Zhang, Lijun</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Loughborough University</subfield>
    <subfield code="0">(orcid)0000-0001-7733-2431</subfield>
    <subfield code="a">Lin, Zhengyu</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">835574</subfield>
    <subfield code="z">md5:4554f98355b8478e3acc5c3792e1b1c7</subfield>
    <subfield code="u">https://zenodo.org/record/4610207/files/rpg_paper_v2.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-02-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-rdc2mt</subfield>
    <subfield code="o">oai:zenodo.org:4610207</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">IET Renewable Power Generation</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Shanghai University</subfield>
    <subfield code="a">Guo, Hui</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Adaptive clustering-based hierarchical layout optimisation for large-scale integrated energy systems</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-rdc2mt</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">734796</subfield>
    <subfield code="a">Research, Demonstration, and Commercialisation of DC Microgrid Technologies</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Different energy systems are generally planned and operated independently, which result in the low energy&amp;nbsp;utilisation, weak self-healing ability, and low system reliability. Therefore, an adaptive clustering-based hierarchical layout&amp;nbsp;optimisation method is proposed for a large-scale integrated energy system, considering energy balance, transmission&amp;nbsp;losses and construction costs. First, an adaptive clustering partition method based on energy balance and load moments is&amp;nbsp;proposed to determine the optimal location of energy hubs and to allocate each distributed generation and load to&amp;nbsp;different energy hubs, forming multiple regional integrated energy systems adaptively. Then, the proposed hierarchical&amp;nbsp;layout optimisation model is formulated as to find the modified minimum spanning tree of regional integrated energy&amp;nbsp;system and multi-regional integrated energy systems respectively, to construct an economical and reliable interconnection&amp;nbsp;network. Finally, the effectiveness of the optimisation model and strategy is verified by simulations.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1049/iet-rpg.2020.0105</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
7
9
views
downloads
Views 7
Downloads 9
Data volume 7.5 MB
Unique views 6
Unique downloads 8

Share

Cite as