Journal article Open Access

Adaptive clustering-based hierarchical layout optimisation for large-scale integrated energy systems

Guo, Hui; Shi, Tianling; Wang, Fei; Zhang, Lijun; Lin, Zhengyu


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/e487c170-ca10-4089-8f1b-eca698543ea5/rpg_paper_v2.pdf"
      }, 
      "checksum": "md5:4554f98355b8478e3acc5c3792e1b1c7", 
      "bucket": "e487c170-ca10-4089-8f1b-eca698543ea5", 
      "key": "rpg_paper_v2.pdf", 
      "type": "pdf", 
      "size": 835574
    }
  ], 
  "owners": [
    32774
  ], 
  "doi": "10.1049/iet-rpg.2020.0105", 
  "stats": {
    "version_unique_downloads": 9.0, 
    "unique_views": 6.0, 
    "views": 7.0, 
    "version_views": 7.0, 
    "unique_downloads": 9.0, 
    "version_unique_views": 6.0, 
    "volume": 8355740.0, 
    "version_downloads": 10.0, 
    "downloads": 10.0, 
    "version_volume": 8355740.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1049/iet-rpg.2020.0105", 
    "latest_html": "https://zenodo.org/record/4610207", 
    "bucket": "https://zenodo.org/api/files/e487c170-ca10-4089-8f1b-eca698543ea5", 
    "badge": "https://zenodo.org/badge/doi/10.1049/iet-rpg.2020.0105.svg", 
    "html": "https://zenodo.org/record/4610207", 
    "latest": "https://zenodo.org/api/records/4610207"
  }, 
  "created": "2021-03-17T13:11:17.180413+00:00", 
  "updated": "2021-03-18T00:27:21.432132+00:00", 
  "conceptrecid": "4610206", 
  "revision": 2, 
  "id": 4610207, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1049/iet-rpg.2020.0105", 
    "description": "<p>Different energy systems are generally planned and operated independently, which result in the low energy&nbsp;utilisation, weak self-healing ability, and low system reliability. Therefore, an adaptive clustering-based hierarchical layout&nbsp;optimisation method is proposed for a large-scale integrated energy system, considering energy balance, transmission&nbsp;losses and construction costs. First, an adaptive clustering partition method based on energy balance and load moments is&nbsp;proposed to determine the optimal location of energy hubs and to allocate each distributed generation and load to&nbsp;different energy hubs, forming multiple regional integrated energy systems adaptively. Then, the proposed hierarchical&nbsp;layout optimisation model is formulated as to find the modified minimum spanning tree of regional integrated energy&nbsp;system and multi-regional integrated energy systems respectively, to construct an economical and reliable interconnection&nbsp;network. Finally, the effectiveness of the optimisation model and strategy is verified by simulations.</p>", 
    "language": "eng", 
    "title": "Adaptive clustering-based hierarchical layout optimisation for large-scale integrated energy systems", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "journal": {
      "title": "IET Renewable Power Generation"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4610206"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4610207"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "rdc2mt"
      }
    ], 
    "grants": [
      {
        "code": "734796", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::734796"
        }, 
        "title": "Research, Demonstration, and Commercialisation of DC Microgrid Technologies", 
        "acronym": "RDC2MT", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "power distribution reliability", 
      "optimisation", 
      "distributed power generation"
    ], 
    "publication_date": "2021-02-16", 
    "creators": [
      {
        "affiliation": "Shanghai University", 
        "name": "Guo, Hui"
      }, 
      {
        "affiliation": "Shanghai University", 
        "name": "Shi, Tianling"
      }, 
      {
        "affiliation": "Shanghai University", 
        "name": "Wang, Fei"
      }, 
      {
        "affiliation": "Shanghai University", 
        "name": "Zhang, Lijun"
      }, 
      {
        "orcid": "0000-0001-7733-2431", 
        "affiliation": "Loughborough University", 
        "name": "Lin, Zhengyu"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }
  }
}
7
10
views
downloads
Views 7
Downloads 10
Data volume 8.4 MB
Unique views 6
Unique downloads 9

Share

Cite as