Dataset Open Access

Single-Cell Gene Expression Profiles for Classification Problems

Gualandi, Stefano; Codegoni, Andrea; Vercesi, Eleonora


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Gene-expression-profile, Leukemia, Brain, Pancreas, Gene Mover Distance</subfield>
  </datafield>
  <controlfield tag="005">20210316074836.0</controlfield>
  <controlfield tag="001">4604569</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Pavia</subfield>
    <subfield code="a">Codegoni, Andrea</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Pavia</subfield>
    <subfield code="a">Vercesi, Eleonora</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">78747182</subfield>
    <subfield code="z">md5:91b47965e75517ed653f139774ac2e0e</subfield>
    <subfield code="u">https://zenodo.org/record/4604569/files/gmd_v1.0.0.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-03-15</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:4604569</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Pavia</subfield>
    <subfield code="0">(orcid)0000-0002-2111-3528</subfield>
    <subfield code="a">Gualandi, Stefano</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Single-Cell Gene Expression Profiles for Classification Problems</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This repository contains a collection of three datasets we use to introduce the Gene Mover Distance in [1] and described below. The three datasets are exported with a basic text-based format (.csv file) like other public datasets largely used in the Machine Learning community.&lt;/p&gt;

&lt;p&gt;The three datasets are extracted from the Gene Expression Omnibus (GEO) database [2], where they appear, respectively,&amp;nbsp;with access number&amp;nbsp;GSE116256 (blood leukemia, [3]), GSE84133 (human pancreas, [4]), and GSE67835 (human brain, [5]). In GEO, the datasets are decomposed into several files, which contain much more details than those reported in this version.&lt;/p&gt;

&lt;p&gt;However, the proposed format should facilitate other researchers in using this data.&lt;/p&gt;

&lt;p&gt;The Gene Mover&amp;#39;s Distance is a measure of similarity between a pair of cells based on their gene expression profiles obtained via single-cell RNA sequencing. The underlying idea of GMD is to interpret the gene expression array of a single cell as a discrete probability measure. The distance between two cells is hence computed by solving an Optimal Transport problem between the two corresponding discrete measures. The Gene Mover&amp;#39;s Distance can be used, for instance, to solve two classification problems: the classification of cells according to their condition and according to their type.&lt;/p&gt;

&lt;p&gt;The repository contains a python script to check the basic statistics of the data.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;[1] Bellazzi, R., Codegoni, A., Gualandi, S., Nicora, G., Vercesi, E. &lt;em&gt;The Gene Mover&amp;#39;s Distance: Single-cell similarity via Optimal Transport&lt;/em&gt;. &lt;a href="https://arxiv.org/abs/2102.01218"&gt;https://arxiv.org/abs/2102.01218&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;[2] Gene Expression Omnibus (GEO) database, &lt;a href="http://www.ncbi.nlm.nih.gov/geo"&gt;http://www.ncbi.nlm.nih.gov/geo&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;[3] van Galen, P., Hovestadt, V., Wadsworth II, M.H., Hughes, T.K., Griffin, G.K., Battaglia, S., Verga, J.A., Stephansky, J., Pastika, T.J., Story, J.L. and Pinkus, G.S., 2019. &lt;em&gt;Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity&lt;/em&gt;. Cell, 176(6), pp.1265-1281.&lt;/p&gt;

&lt;p&gt;[4] Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K., Shen-Orr, S.S., Klein, A.M. and Melton, D.A., 2016.&lt;em&gt; A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure&lt;/em&gt;. Cell systems, 3(4), pp.346-360.&lt;/p&gt;

&lt;p&gt;[5] Darmanis, S., Sloan, S.A., Zhang, Y., Enge, M., Caneda, C., Shuer, L.M., Gephart, M.G.H., Barres, B.A. and Quake, S.R., 2015. &lt;em&gt;A survey of human brain transcriptome diversity at the single cell level&lt;/em&gt;. Proceedings of the National Academy of Sciences, 112(23), pp.7285-7290.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a">http://arxiv.org/abs/2102.01218</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4604568</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4604569</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
115
11
views
downloads
All versions This version
Views 115115
Downloads 1111
Data volume 866.2 MB866.2 MB
Unique views 106106
Unique downloads 99

Share

Cite as