Dataset Open Access

AN OPEN-SOURCED TIME-FREQUENCY DOMAIN RF CLASSIFICATION FRAMEWORK

Badger, Robert; Kim, Minje


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/48803b9d-9a20-49f2-86b6-131316b0abcf/open_source_RF_datasets.zip"
      }, 
      "checksum": "md5:18427e4fbe6b8fae927cc9bc057ec4fb", 
      "bucket": "48803b9d-9a20-49f2-86b6-131316b0abcf", 
      "key": "open_source_RF_datasets.zip", 
      "type": "zip", 
      "size": 183484122445
    }
  ], 
  "owners": [
    196102
  ], 
  "doi": "10.5281/zenodo.4603987", 
  "stats": {
    "version_unique_downloads": 1.0, 
    "unique_views": 71.0, 
    "views": 87.0, 
    "version_views": 87.0, 
    "unique_downloads": 1.0, 
    "version_unique_views": 71.0, 
    "volume": 183484122445.0, 
    "version_downloads": 1.0, 
    "downloads": 1.0, 
    "version_volume": 183484122445.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4603987", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4603986", 
    "bucket": "https://zenodo.org/api/files/48803b9d-9a20-49f2-86b6-131316b0abcf", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4603986.svg", 
    "html": "https://zenodo.org/record/4603987", 
    "latest_html": "https://zenodo.org/record/4603987", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4603987.svg", 
    "latest": "https://zenodo.org/api/records/4603987"
  }, 
  "conceptdoi": "10.5281/zenodo.4603986", 
  "created": "2021-03-17T11:01:25.405466+00:00", 
  "updated": "2021-06-01T14:58:34.555429+00:00", 
  "conceptrecid": "4603986", 
  "revision": 4, 
  "id": 4603987, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4603987", 
    "description": "<p>These datasets accompany the EUSIPCO 2021 paper:&nbsp;AN OPEN-SOURCED TIME-FREQUENCY<br>\nDOMAIN RF CLASSIFICATION FRAMEWORK</p>\n\n<p>Labeled in-phase and quadrature (IQ)&nbsp;datasets captured using software defined radios (SDR).&nbsp;12 classes comprised of 10 different transceivers plus &#39;noise&#39; class and class for zero hz artifact from SDR direct conversion receiver.</p>\n\n<p>The IQ data has the extension .sigmf-data, and the associated JSON file that contains the labeled metadata is .sigmf-meta.</p>\n\n<p>There is a directory called &#39;data&#39;, this has all the extracted features for each class and is used for training.</p>\n\n<p>There are also 12 folders named &#39;data_val1&#39; - &#39;data_val12&#39;. These contain the extracted features used validation accuracy.</p>\n\n<p>There are numerous training, validation and testing datasets used to build the training and validation sets, all comprised of the ten primary RF modulation waveforms:</p>\n\n<p>1) LoRa 125 (lora125)</p>\n\n<p>2) LoRa 250 (lora250)</p>\n\n<p>3) PTT analog transceivers (uv5r, vx8)</p>\n\n<p>4) PTT digital transceivers (gd55, tyt)</p>\n\n<p>5) RF doorbell (vod, sado)</p>\n\n<p>6) misc. RF keyfob (click)</p>\n\n<p>7) RF light switch (light)</p>\n\n<p>8) Yaesu system fusion PTT (ysf)</p>\n\n<p>The testing directory:&nbsp;testing_data_1msps conatins all the test data for the auto grader notebooks at the github repo.</p>\n\n<p>These datasets go with the public github repo called:&nbsp;https://github.com/rdbadger/open_source_RFML</p>\n\n<p>&nbsp;</p>", 
    "language": "eng", 
    "title": "AN OPEN-SOURCED TIME-FREQUENCY DOMAIN RF CLASSIFICATION FRAMEWORK", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4603986"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4603987"
          }
        }
      ]
    }, 
    "keywords": [
      "radio frequency machine learning", 
      "OPEN-SOURCED TIME-FREQUENCY DOMAIN RF CLASSIFICATION FRAMEWORK"
    ], 
    "publication_date": "2021-03-14", 
    "creators": [
      {
        "orcid": "0000-0003-1341-1215", 
        "affiliation": "Indiana University", 
        "name": "Badger, Robert"
      }, 
      {
        "affiliation": "Indiana University", 
        "name": "Kim, Minje"
      }
    ], 
    "meeting": {
      "acronym": "EUSIPCO", 
      "url": "https://eusipco2021.org/", 
      "dates": "Aug. 23-27, 2021", 
      "place": "Dublin, Ireland", 
      "title": "29th European Signal Processing Conference"
    }, 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4603986", 
        "relation": "isVersionOf"
      }
    ]
  }
}
87
1
views
downloads
All versions This version
Views 8787
Downloads 11
Data volume 183.5 GB183.5 GB
Unique views 7171
Unique downloads 11

Share

Cite as