Software Open Access

PredictPandemic web-application

Alessandro Rabiolo; Eugenio Alladio; Esteban Morales; Alessandro Marchese


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4603713</identifier>
  <creators>
    <creator>
      <creatorName>Alessandro Rabiolo</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7772-5929</nameIdentifier>
      <affiliation>Department of Ophthalmology, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, United Kingdom</affiliation>
    </creator>
    <creator>
      <creatorName>Eugenio Alladio</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9362-6907</nameIdentifier>
      <affiliation>Department of Chemistry, University of Turin, Turin, Italy</affiliation>
    </creator>
    <creator>
      <creatorName>Esteban Morales</creatorName>
      <affiliation>Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, USA</affiliation>
    </creator>
    <creator>
      <creatorName>Alessandro Marchese</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7716-7261</nameIdentifier>
      <affiliation>Department of Ophthalmology, Vita-Salute University, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy</affiliation>
    </creator>
  </creators>
  <titles>
    <title>PredictPandemic web-application</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>EOSC</subject>
    <subject>Open Science</subject>
    <subject>Web-application</subject>
    <subject>Covid-19 epidemic</subject>
    <subject>Predictive models</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-03-14</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4603713</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="Cites" resourceTypeGeneral="JournalArticle">10.1101/2021.03.09.21253186</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4603712</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/eoscsecretariat</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This is the code of the latest version of our R Shiny web-application, currently available at https://predictpandemic.org&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/831644/">831644</awardNumber>
      <awardTitle>EOSCsecretariat.eu</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
94
19
views
downloads
All versions This version
Views 9494
Downloads 1919
Data volume 2.1 MB2.1 MB
Unique views 8686
Unique downloads 1515

Share

Cite as