Dataset Open Access

Building types map of Germany

Schug, Franz; Frantz, David; van der Linden, Sebastian; Hostert, Patrick


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Remote Sensing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Earth Observation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Sentinel-1</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Sentinel-2</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Copernicus</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Germany</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Building</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Building Types</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Settlement</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Map</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning</subfield>
  </datafield>
  <controlfield tag="005">20210313002721.0</controlfield>
  <controlfield tag="001">4601219</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Humboldt-Universität zu Berlin</subfield>
    <subfield code="0">(orcid)0000-0002-9292-3931</subfield>
    <subfield code="a">Frantz, David</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Greifswald</subfield>
    <subfield code="a">van der Linden, Sebastian</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Humboldt-Universität zu Berlin</subfield>
    <subfield code="a">Hostert, Patrick</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">120635328</subfield>
    <subfield code="z">md5:5fe901a7444aa392b80401c894aef151</subfield>
    <subfield code="u">https://zenodo.org/record/4601219/files/building-types-germany.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-03-12</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:4601219</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Humboldt-Universität zu Berlin</subfield>
    <subfield code="0">(orcid)0000-0003-1534-5610</subfield>
    <subfield code="a">Schug, Franz</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Building types map of Germany</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">741950</subfield>
    <subfield code="a">Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This dataset features a map of building types for Germany on a 10m grid based on Sentinel-1A/B and Sentinel-2A/B time series. A random forest classification was used to map the predominant type of buildings within a pixel. We distinguish single-family residential buildings, multi-family residential buildings, commercial and industrial buildings and lightweight structures. Building types were predicted for all pixels where building density &amp;gt; 25 %. Please refer to the publication for details.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Temporal extent&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Sentinel-2 time series data are from 2018. Sentinel-1 time series data are from 2017.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Data format&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). Metadata are located within the Tiff, partly in the FORCE domain. There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. Building type values are categorical, according to the following scheme:&lt;/p&gt;

&lt;p&gt;0 - No building&lt;/p&gt;

&lt;p&gt;1 - Commercial and industrial buildings&lt;/p&gt;

&lt;p&gt;2 - Single-family residential buildings&lt;/p&gt;

&lt;p&gt;3 - Lightweight structures&lt;/p&gt;

&lt;p&gt;4 - Multi-family residential buildings&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Further information&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de).&lt;br&gt;
A web-visualization of this dataset is available &lt;a href="https://ows.geo.hu-berlin.de/webviewer/population/"&gt;here&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Publication&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Schug, F., Frantz, D., van der Linden, S., &amp;amp; Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Acknowledgements&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;The dataset was generated by FORCE v. 3.1 (&lt;a href="https://doi.org/10.3390/rs11091124"&gt;paper&lt;/a&gt;, &lt;a href="https://github.com/davidfrantz/force"&gt;code&lt;/a&gt;), which is freely available software under the terms of the GNU General Public License v. &amp;gt;= 3. Sentinel imagery were obtained from the &lt;a href="https://scihub.copernicus.eu/"&gt;European Space Agency and the European Commission&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Funding&lt;/strong&gt;&lt;br&gt;
This dataset was produced with funding from the European Research Council (ERC) under the European Union&amp;#39;s Horizon 2020 research and innovation programme (&lt;a href="https://boku.ac.at/understanding-the-role-of-material-stock-patterns-for-the-transformation-to-a-sustainable-society-mat-stocks"&gt;MAT_STOCKS&lt;/a&gt;, grant agreement No 741950).&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a">10.1371/journal.pone.0249044</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4601218</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4601219</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
177
20
views
downloads
All versions This version
Views 177177
Downloads 2020
Data volume 2.4 GB2.4 GB
Unique views 164164
Unique downloads 1818

Share

Cite as