
DOI: 10.1002/ ((please add manuscript number))
Article type: Full Paper

Effects of Delocalized Charge Carriers in Organic Solar Cells:
Predicting Nanoscale Device Performance from Morphology

Adam G. Gagorik, Jacob W. Mohin, Tomasz Kowalewski, Geoffrey R. Hutchison*

Dr. A. G. Gagorik, Prof. G. R. Hutchison
University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260
E-mail: geoffh@pitt.edu
J. W. Mohin, Prof. T. Kowalewski
Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
E-mail: tomek@andrew.cmu.edu

Keywords: charge transport, conducting polymers, organic electronics, solar cells

Monte Carlo simulations of charge transport in organic solar cells were performed for ideal

and isotropic bulk heterojunction morphologies while altering the delocalization length of charge

carriers. Previous device simulations have either treated carriers as point charges or with a highly

delocalized mean-field treatment. Our new model of charge delocalization leads to weakening of

Coulomb interactions and more realistic predicted current and fill factors at moderate delocaliza-

tion, relative to point charges. We find that charge delocalization leads to significantly increased

likelihood of escaping interface traps. In isotopic two-phase morphologies, increasing the domain

sizes leads to slight decreases in predicted device efficiencies. We previously showed that tortuous

pathways in systems with small domain sizes can decrease device performance in thin film systems.

However, the diminishing effects of Coulomb interactions with delocalization and efficient sepa-

rations of excitons by small domains make morphological effects less pronounced. We emphasize

that delocalization, which has largely been ignored in past simulations, is an important parameter

to consider and optimize when choosing materials for organic solar cells.

1 Introduction

A strong theoretical framework of charge transport in organic materials[1,2] is needed to improve

the efficiencies of organic field effect transistors (OFETs)[3,4,5,6,7], organic light emitting diodes

(OLEDs)[8,9], and organic photovoltaics (OPVs)[10,11,12,13,14,15]. The promise is that these devices



will be cheaper and more environmentally friendly than their inorganic counterparts. Costs are may

be low because devices can be manufactured using existing solution processing techniques[16,17,18]

and synthetically tailored[19] to specific applications. However, the understanding of charge trans-

port in disordered organic semiconductors is far from complete. Mechanisms of charge transport

in organic materials are very different from crystalline inorganic materials, where band transport

occurs. While band transport can be observed in pure molecular crystals at low temperature, charge

transport is typically described by localized carrier hopping at room temperature. [20]. The charge

carriers are localized to molecular sites through disorder of the morphology and electron-phonon

coupling. In contrast, highly delocalized carriers move through the energy bands of an inorganic

material, yielding a high charge carrier mobility.

More efficient charge delocalization is therefore a major goal of molecular design in conjugated

materials. Although the carriers are localized, some degree of delocalization can still play a critical

role, especially in OPVs, where Coulomb bound interface traps easily form between “separated”

carriers. For example, charge delocalization between ⇡-stacked benzenes has been observed[21].

Delocalization has also been suggested as a mechanism for efficient long-range charge separa-

tion in organic semiconductors[22,23]. For example, well-ordered, semi-crystalline domains likely

lead to charge delocalization and improved device performance in OPVs. Single-junction devices

with well ordered morphologies have been reported with very large fill factors (76–80 %) and

power conversion efficiencies of up to 8.7 %[24]. A complete picture of the role of crystallinity is

not yet clear. While charge transport is enhanced by crystalline domains, exciton transport may be

inhibited in well ordered systems[25]. This additional level of complexity is due to the dominance

of exciton diffusion occurring by an intermolecular mechanism. In fact, exciton delocalization

in regioregular P3HT is estimated to be as low as 1 to 2 nm, and therefore may not play a major

role in charge separation[26]. Studying the interplay of delocalization with electrostatic interactions

between carriers may help elucidate these effects.

The combination of electrostatics and delocalization can play a major role in the charge separa-

tion process. For example, along with hot charge transfer (CT) states, calculations show that charge

delocalization can lead to ultra fast (< 100 fs) charge separation via the lowering of Coulomb bar-
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riers[27]. While delocalization can be treated very accurately in quantum calculations[28,26,27], the

effect is generally ignored in meso-scale simulations of charge transport. In such simulations,

highly accurate treament of electrostatic effects is achieved by largely ignoring the effects of delo-

calization and treating carriers as point charges[29,30,31,32].

Since previous simulations have treated carriers exclusively as point charges or not at all, our

primary goal was to add delocalization to Monte Carlo charge transport methods to more accu-

rately represent carrier electrostatic interactions. To address these questions, we have incorporated

delocalization into our existing Monte Carlo model[30,29,31,32] of charge transport in OPVs. We have

used the Monte Carlo model to examine a series of four isotropic two-phase morphologies with

increasing domain size, three ideal morphologies based on mathematical minimal surfaces, and

morphologies based on bands. We have not yet considered how delocalization effects transport for

every possible mixed phase morphology. Such effects are likely worth further investigating.

In this work, the effects of delocalization have been examined by varying the delocalization

length of the carriers, from 0.75 to 1.50 nm, which are compared to simulated point charges

and non-interacting charges. These length scales are comparable to those found from quantum

calculations.[28,26,27] As a result, transport behavior is affected on the length scale of the exciton

dissociation radius (⇠20-30 nm). We have not yet addressed various questions such as how delo-

calization may be different in the donor and acceptor phases, anisotropy of delocalization, or how

delocalization may vary during transport. For example, upon initial absorption of a photon, an

exciton may be highly delocalized, and then localize after a very short time period (a few ps) due

to electron-phonon coupling. Such topics are clearly relevant for future simulation efforts.

We have used our Monte Carlo simulations to predict current-voltage curves (IV Curves) of a

solar cell device. From the IV curves we compute the efficiency of each system by calculating fill

factors, a common figure of merit for solar cells. The fill factor (FF ) is the ratio of the maximum

power that can be extracted from the cell to the theoretical power, as shown in Equation 1:

FF =

vmp ⇥ imp

voc ⇥ isc
⇥ 100% (1)

In Equation 1, imp is the current at maximum power, vmp is the voltage at maximum power, isc

is the short circuit current, and voc is the open circuit voltage. The fill factor ranges between 0
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and 100 %, and can be viewed as the ratio of the areas of two rectangles - a smaller one formed

by imp and vmp, and a large one formed by isc and voc. The closer the fill factor is to 100 %, the

more square (ideal) the IV curve, and the more efficient the performance of the solar cell. In a real

device, the solar cell is connected to an external load, which has a resistance, R. Only when R is

the ratio vmp/imp can the maximum power be extracted from the device. The short circuit current

isc corresponds to R = 0, while the open circuit voltage corresponds to R = 1. While the fill

factor gives information on IV curve shape, solar cells with similar fill factors can have different

pmp. For example, a device that poorly passes current can have a small isc and imp, yet appear to

have a good fill factor. Therefore, it is important to consider multiple measures of performance, as

discussed below.

2 Computational Methods

2.1 Lattice

The model consists of a lattice of cubic sites, with each site representing neutral molecules, 1.0

nm3 in size, approximately the same size as an isolated fullerene molecule. This is therefore the

smallest possible lattice without treatment of atomic-scale details.

In this work, we have used a lattice of 192 ⇥ 192 ⇥ 32 nm3. Charge carriers, such as holes and

electrons, can occupy the sites. Holes are to be viewed as an electron missing from the highest oc-

cupied molecular orbital (HOMO) of a molecule. Electrons are to be viewed as an excess electron

in the lowest unoccupied molecular orbital (LUMO). When an electron and hole occupy the same

site, they are an exciton. Excitons can recombine to form unoccupied sites.

2.2 Exciton Injection

The simulation begins by injecting excitons randomly in the system, as a model for photo-generated

electronic excitations. We have assumed that the system is ideal in that all sites have the same prob-

ability to form an exciton, regardless of thickness. In the future, we will relax these assumptions,
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to allow for non-uniform thickness or self-adsorption in deeper layers. For now, we have used an

injection probability estimated from the AM1.5 solar spectrum, and is proportional to the surface

area of the device. For a 256 ⇥ 256 nm2 area, we have estimated an injection probability of 10�3

ps�1. This injection probability is scaled by a factor of 1922/2562 = 0.5625 for an area of 192

⇥ 192 nm2. While optical effects may change the intensity distribution (e.g., due to absorbance

attenuating light in the film, and differences in refractive indices between the p-type and n-type

phase) these are currently ignored.

2.3 Recombination

Recombination is also allowed to occur at a fixed probability for excitons in the system. Unlike

injections, a fixed recombination probability does not directly correspond to a fixed rate because

excitons are only considered when holes and electrons occupy the same site. A constant probabil-

ity is a simplification; recombination in organic solar cells can happen by many mechanisms with

different timescales[33]. For example, in a bimolecular recombination mechanism, the Langevin ex-

pression predicts recombination rate to depend upon the hole/electron mobilities, the electron/hole

concentrations, and the intrinsic carrier concentration[33]. We have used a fixed recombination

probability of 10�4 ps�1, inspired by kinetic Monte Carlo simulations[34,35,36]. Recombination is

performed at the end of each step. All electrons and holes occupying the same site are allowed to

recombine at the fixed rate given above. The units on 10

�4 ps�1 mean that, if, on average, only

one exciton is present at the end of every Monte Carlo step, then it would take 10 ns for an exciton

to recombine. There are frequently more than one exciton at the end of each step. In practice, this

fixed rate is not realized because the average number of excitons present in the simulation is highly

dependent upon charge concentration. The concentration will change with voltage. This means

charges are less likely to combine at high voltages (carriers are being pulled apart) and more likely

to recombine at voc. At voc, the external bias balances the internal bias. With only Coulomb inter-

actions present, pulling separated carriers apart becomes difficult; it is likely for excitons to reform

and recombine.
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2.4 Energy Evaluations

Charges hop between adjacent sites using the Metropolis criterion. The probability to hop between

sites is HABe
���E if �E  0. If �E > 0, the probability to hop between sites is HAB. HAB

can be thought of as a coupling constant representing the approximate electronic overlap between

molecular wave functions. However, more practically, HAB enforces carriers to remain stationary

a fraction of the time when energy changes are negative. We have used HAB = 1/3, independent of

hopping direction. The value used determines the overall magnitude of the current calculated, and

approximates experimental current in OFETs[32]. Directional independence is an approximation

that may not be representative of many systems, where charge transfer rates may be anisotropic

(i.e., along ⇡-⇡ stacks). For example, charge transfer efficiency will be preferred along stacked do-

mains, although in an amorphous device, such directional effects would be expected to average out.

Additionally, coupling would be different among differing materials. HAB is made exponentially

smaller, HAB = 1/27, for a two-site hop. This is made to simulate an exponentially less likely

tunneling event in variable-range hopping. Carriers are considered individually for trial moves.

Sites are assigned energies representing the HOMO and LUMO energies of the molecules. There

are three main contributions: the donor/acceptor offset, the overall device potential between elec-

trodes (including differences between metal work functions), and the Coulomb interaction between

charges.

The sites are classified as donor or acceptor, according to the system morphology chosen, as

discussed below. The donor/acceptor LUMO and HOMO are offset by a constant energy �ELL =

�EHH = 0.5 eV. This value is slightly larger than the Coulomb interaction between two opposite

charges spaced 1 nm apart 0.411 eV. It provides a driving force to separate carriers at the interface.

and the open-circuit voltage VOC is idealized at an optimum of ⇠1.5 V, to consider the possible

efficiencies of ideal materials. Realistic experimental VOC values are usually 0.5-0.8 V. Next,

a linear electrostatic potential is applied between the electrodes, using the potential difference

�V = Vf � Vi and width of the device, L. This potential includes the external and intrinsic bias.

To construct an IV curve, this potential is varied from -2.0 to 2.0 V to pass the VOC .
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Figure 1: (A) Coulomb potential of a delocalized negative charge located at the origin as a function

of r. (B) Charge density of the delocalized charge. As the delocalization parameter, �, increases,

the Coulomb interaction becomes weaker. Point charges correspond to a delocalization parameter

of � = 0 nm. Non-interacting charges are represented by � = 1.

2.5 Electrostatic Interactions

Disorder is added to the system using the Coulomb interaction, as shown in Equation 2. In Equa-

tion 2, N is the number of charges (carriers or charged defects), q is the charge, rij is the distance

between charges i and j, and ✏ = 3.5 is the dielectric constant. For every Monte Carlo move, the

Coulomb interaction must be calculated for the initial and final state - around 2⇥N⇥Nsteps times.

Even with a cutoff of 50 nm and lookup table for inter-cell distances, the brute force evaluation of

Equation 2 is the most time consuming step of the simulation, because it scales as N2. Therefore,

a parallel GPU implementation of the Coulomb sum was used to make the calculation feasible.

With the GPU code, carrier numbers of 10,000 or more can be handled.

VC(rj) =
NX

i=0

q

4⇡✏✏0|rij|
(2)

Equation 2 describes the interaction between point charges. To compute the potential due to a

charge distribution, one uses Poisson’s Equation, r2V = ⇢/(✏✏0), where ⇢ is the charge density.
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When using a charge density described by spherically symmetric Gaussians (Equation 3), an ana-

lytical solution can be found (Equation 4). The result is is simply the Coulomb law multiplied by

the error function, with a parameter � describing the delocalization length.

⇢(rj) =
NX

i=0

q

�3
(2⇡)3/2

e�
|rij |

2

2�2 (3)

V erf
C (|rj|) =

NX

i=0

q

4⇡✏✏0|rij|
erf

 
|rij|
�
p
2

!

(4)

The error function only modifies the Coulomb interaction at short range. For example, when � =

1 nm, 0.95  V erf
C /VC  1 at r � 2 nm. However, at short distances, the Coulomb potential is

significantly diminished. For example, when � = 1 nm, 0.0  V erf
C /VC  0.68 at r  1 nm. This

effect can be seen in Figure 1A, where the potential at each value of � converges to the Coulomb

potential at large r (i.e., � 3 nm). The charge density as a function of r is shown in Figure 1B.

The charge density was chosen such that each Gaussian integrates to a unit charge. Note that this

solution to Poisson’s equation can only be obtained in 3D, so could not be applied to our previous

simulations[30] on 2D monolayer OPVs. The use of spherically symmetric charge distributions

is an oversimplification. In reality, molecular orbitals with angular momentum are not spheres.

Anisotropy will be added in the future, for example, by considering Gaussians ellipsoids.

The choice of the � delocalization lengths of 0.75 nm to 1.5 nm, as discussed above, corre-

sponds to a range found through quantum mechanical calcualtions. [28,26,27] Moreover, as seen in

Figure 1A, with the 1.0 nm grid spacing between molecules, � ranging from 0.75 nm, 1.0 nm,

and 1.25 nm, roughly span the energetic range between point charges and � = 1.5 nm. Smaller �

values experience almost the same electrostatic interactions at this grid spacing as point charges,

and vanishingly small probabilities of acceptable Monte Carlo moves, as indicated in Table S1 and

illustrated in Figure S5. Since the spatial resolution of our Monte Carlo grid roughly corresponds

to a molecular size, while decreased delocalization lengths may be interesting, such considerations

would require treatment of atomic-level (i.e., quantum) details.
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A) gyroid B) p-surface C) d-surface D) band4

E) iso3 F) iso4 G) iso6 H) iso9

Figure 2: (32 nm)3 slices of all morphologies studied. Full systems were 192 ⇥ 192 ⇥ 32 nm3 and

shown in the supporting information.

3 Systems

Morphologies were constructed with a domain of 192 ⇥ 192 ⇥ 32 nm3, or 1,179,648 sites. Pe-

riodic boundary conditions were not used, to properly include finite size effects in real materials,

such as surface trapping. All morphologies consisted of a donor and an acceptor phase whose

frontier molecular orbital energies were offset arbitrarily by 0.5 eV, as described above. Device

performance can be affected by many parameters, such as mobility and connectivity, and is not lim-

ited to just charge delocalization. Therefore, we have considered ideally connected morphologies

and morphologies more representative of bulk heterojunctions. Realistic, isotropic morphologies

were simulated, and compared with “ideal” morphologies constructed from equations of triply pe-

riodic minimal surfaces[37], shown in Figure 2. Such surfaces are free of self intersections and

contain perfect connectivity to the electrodes. The minimal surfaces chosen, which are of the form

f(x, y, z) = 0, were the gyroid (Eq. 5, Figure 2A), p-surface (Eq. 6, Figure 2B), and d-surface
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(Eq. 7, Figure 2C).

cos(kxx) sin(kyy) + cos(kyy) sin(kzz) + cos(kzz) sin(kxx) = 0 (5)

cos(kxx) + cos(kyy) + cos(kzz) = 0 (6)

sin(kxx) sin(kyy) sin(kzz) +

sin(kxx) cos(kyy) cos(kzz) +

cos(kxx) sin(kyy) cos(kzz) +

cos(kxx) cos(kyy) sin(kzz) = 0 (7)

In Equations 5, 6, and 7, k is an angular wavenumber, defining the periodicity of the surface. We

choose a k that corresponds to a wavelength � = 8 nm, as shown in Equation 8, where L is a

dimension of the grid, and n is the number of periods along the dimension. Only systems where

(k = kx = ky = kz) were studied, and the minimum possible distance between surface boundaries

is �
2 = 4 nm.

� =

L

n
=

192

8

=

32

4

= 8 (8)

k =

2⇡

�
=

2⇡

8

=

⇡

4

(9)

In practice, sites were assigned by evaluating f(x, y, z) on the domain and thresholding. Donor

sites were placed where f(x, y, z) >= 0, while acceptor sites were placed where f(x, y, z) < 0.

This assignment makes the zero-level contour-isosurface of f(x, y, z) the boundary between donor

and acceptor sites.

The last ideal morphology studied was the “band” morphology. The band morphology is a

checkerboard pattern of alternating donor and acceptor sites in the yz-plane, extended along x-

direction. Two band morphologies were used. The band4 morphology has a checker size of 4 ⇥ 4

nm2. The band8 morphology has a checker size of 8 ⇥ 8 nm2. Figure 2D shows a (32)3 nm3 slice

of the band4 morphology.

Traditional isotropic morphologies, intended to simulate a random organic bulk heterojunction,

are also shown in Figure 2. Such isotropic morphologies were constructed using an algorithm
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discussed previously[30], extended into three dimensions. In the algorithm, a grid of random noise

is constructed in the domain and then convoluted with a three-dimensional Gaussian of desired

width, �. These real valued sets are then converted into binary maps by a thresholding rule, with

zeros corresponding to D (donor) and ones corresponding to A (acceptor) phases. The average

domain size in such maps is set by the value of �. To produce morphologies with equal volume

fractions of both phases (�1 = �2 = 50%), the thresholding rule was applied at the 50% level

of the cumulated probability of the normalized distribution of intensities. In these morphologies,

the domain size hLpi is approximately twice the size of �, such that the � = 3, 4, 6, 9 nm leads

to domain sizes of 6, 8, 12, 18 nm. Four isotropic systems were studied, named iso3, iso4, iso6,

and iso9. An important metric of the morphologies is the inter-facial area between phases, which

is correspondingly 196.04, 123.31, 104.39, 71.52 m2 cm�3. The iso3 morphology domain size

is comparable to the minimum curvature morphologies’ minimum distance between phases of 4

nm. This excludes the band8 morphology, which has a domain size more comparable to the iso4

system.

Although the isotropic two-phase morphologies represent a mixed phase system already, we

probed the effect of adding inter-dispersed acceptor sites in the donor material of the iso9 system.

Such “mixed phases” occur when individual fullerene molecules disperse into the polymer donors.

In this case, called iso9p, 1179 sites (0.2%) of the donor phase was changed to acceptor material

at randomly chosen locations. In the end, however, one must keep in mind that a real macroscopic

device will be a combination of multiple regions with somewhat different morphologies, and thus

should view our simulation as a subset of such a device.

While our model could consider more phases, that is not our current focus. In the future, a

few avenues will be pursued to better differentiate phases. For example, multiple energetic offsets

will be used to create a 3 or more domain system. Anisotropic transfer couplings (HAB, discussed

above) will be used to consider multi-scale size effects, such as crystalline regions with larger

transfer rates. While we use a rectangular lattice, others will be implemented, to better probe the

effects of crystallization. Though this would modify transfer probability through changing the

energetic calculation, the more direct approach would be changing HAB. Finally, we will consider
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Figure 3: (A) Calculated fill factor as a function of delocalization length (�) for ideal morphologies.

(B) Calculated maximum power as a function of delocalization length (�) for ideal morphologies.

a multi-region cell, where different regions contain differing order parameters, such as domain

size.

4 Results and Discussion

Figure 3A shows the computed fill factors for ideal morphologies. Aside from the band8 mor-

phology, each ideal system has the same domain size of 4 nm. As the delocalization is increased

from point charges (� = 0.00 nm) to delocalized charges (� = 0.75 nm), the average FF increases

from 35% to 58%. The FF continues to increase, less dramatically, as the delocalization is in-

creased to � = 1.50 nm. Non-interacting charges, which can be viewed as infinitely delocalized

carriers in this model, yield devices with the best FF (70%). While there is no significant trend

in morphology with delocalized charges, the trend with point charges is gyroid < d-surface <

p-surface < band4. Small differences exist, but are not statistically significant with delocalized

charges. Figure 3B shows the maximum power (pmp) for ideal morphologies. The pmp indicates

the maximum work per second that can be performed by the solar cell. The maximum power and
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Figure 4: (A) Calculated fill factor as a function of delocalization length (�) for isotropic two-

phase morphologies. (B) Calculated maximum power as a function of delocalization length (�) for

isotropic two-phase morphologies.

power conversion efficiency are both proportional to the fill factor, and thus increase with delocal-

ization. The largest increases are seen when moving from point charges to delocalized charges, and

from delocalized charges to non-interacting charges. With point charges, transport is hindered by

energetic disorder, but as the energetic disorder is smoothed out by delocalization, the maximum

power increases because more carriers can navigate to the electrodes. Interestingly, the predicted

isc is consistent across all ideal morphologies and delocalization lengths, but the imp drives the

increase in maximum power. This suggests that delocalization effects change the shape of the IV

curve, not simply increasing the overall current due to an increased number of carriers escaping

interfacial pinning.

Figure 4A shows computed fill factors for isotropic two phase morphologies as a function of

sigma. The iso4 and iso6 systems have very similar average domain size (8.1, 9.57 nm). Within er-

ror, their FF are very similar. As the delocalization of carriers increases, the device performance

increases, much like the ideal morphologies. The most dramatic increase occurs between point

charges and � = 0.75 nm, where the fill factors increase from < 40% to > 50%. Since charge
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carriers in organic solar cells are not point charges, but delocalized, the former is unrealistic for

such idealized morphologies, and the latter is more likely considering champion solar cells already

achieve FF approaching 70%. However, the differences of FF for � = 0.75–1.50 nm is much

less pronounced. Only when non-interacting charges (� = 1) are used, does the FF increase

significantly. The fill factor decreases in iso9p relative to iso9 for � = 1.00 nm and non-interacting

charges. However, for point charges, the fill factor is not smaller. Figure 4B shows pmp for isotropic

morphologies, which increases with delocalization. The pmp is consistently smaller in iso9p rel-

ative to iso9. In the iso9p system, acceptor sites, termed “pepper,” were randomly added in the

donor phase, representing PCBM inter-dispersed in the P3HT phase. This is due a smaller imp

when pepper defects are present (vmp does not vary between iso9 and iso9p). The pepper defects

acts as electron traps, reducing the number of carriers that can escape to the electrodes.

When we compare the idealized mathematical minimal surfaces, such as gyroid, p-surface,

and d-surface to the two-phase isotropic morphologies, such as iso3, iso4, etc., we note that the

isc and imp are slightly lower. That is, the typical curved two-phase isotropic systems show greater

predicted maximum power and thus power conversion efficiency than idealized systems. We sus-

pect the increased interfacial surface area in these bulk-heterojunction morphologies, combined

with efficient exciton separation and escape from the Coulomb-pinned interfaces with delocalized

charges, lead to such high maximum powers. These results suggest that in materials with high

delocalization and efficient exciton separation, traditional bulk-heterojunction morphologies may

be at least as efficient as band or “comb” idealized morphologies due to high surface area.

In a previous study, on simulations of 2D monolayer devices, we found that decreasing the

domain size leads to poorer charge extraction in thin films[30]. We argued that while smaller domain

sizes lead to efficient exciton separation, small tortuous pathways can hinder charge extraction. The

close proximity of charges and tortuous morphology to the electrodes lead to a disordered energy

landscape with a limited number of viable pathways to the electrodes. The trend appears to reverse

in larger bulk 3D systems. That is, smaller domains show improved device performance at each

value of the delocalization parameter �. However, we note that the effects are relatively small and

within statistical errors. More replicas need to be simulated and averaged to elucidate the effect.
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A B

Figure 5: Snapshot of iso3 morphology at voc. Interface traps form more easily with less delocal-

ization. Yellow and red represent donor and acceptor sites. Electrons and holes are shown as black

and white spheres. (A) � = 0.75 nm (B) � = 1.50 nm

Given the interplay between tortuous pathways and efficient exciton separation, the separation

appears to win. That is, we propose that more pathways have opened up in the 3D environment

than were present in our previous 2D thin film simulations, due to the increased dimensionality.

Moreover, the decreased electrostatic interactions due to the delocalized electrostatic model likely

increases the influence of efficient exciton separation.

Figure 5 shows snapshots of the Monte Carlo simulation for the iso3 morphology at voc. At voc,

the potential between the electrodes balances the internal intrinsic bias. Therefore, there is very

little incentive for excitons to separate and free carriers to travel to the electrodes. Recombination

is the most likely fate of the carriers in this regime. However, the effects of charge delocalization

are easily visualized at voc. When � = 0.75 nm (Figure 5A), holes and electrons remain bound in

interface traps. However, as the delocalization is increased to � = 1.50 nm (Figure 5B), the number

of bound interface traps decreases significantly. The energetics of escaping the interface trap are

more favorable when the carriers are delocalized.

Consider, for example, an electron-hole pair trapped at an interface. The exciton has separated,

putting the electron in the LUMO of the acceptor, and the hole in the HOMO of the donor. The

Coulomb attraction between the hole and electron in dielectric continuum (✏ ⇡ 3.5) separated by
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1 nm is 0.411 eV, nearly 15.9 times larger than kT at 300 K (0.0259 eV). A potential difference of

1.0 V between electrodes separated by 256 nm only releases 0.00390 eV of energy during the 1.0

nm hop out of this state. Given that the Coulomb attraction is only halved at 2.0 nm, this means

the hole and electron will “separate” only a minuscule fraction of the time (e���E = 0.0407%).

Even if the carriers reach this state, it is extremely likely the charges fall back into the charge trap

state, and possibly recombine. There must be other mechanisms to explain the efficient charge

separation in organic materials.

The delocalization of charges can weaken the Coulomb interaction between trapped carriers.

While a fully quantum treatment would be ideal, the interaction of spherically symmetric Gaussian

charge distributions can be modeled using the standard Coulomb law and the error function (Eq.

4). Using this model, the probability to separate carriers, of only modest delocalization lengths (�

= 0.5–1.5 nm) can increase dramatically. For example, a delocalization length of 1.0 nm dampens

the Coulomb interaction by erf(1.0/
p
2) = 68% at an electron hole separation of 1.0 nm. The

probability to escape the charge trap state increases by over a factor of 100 (�E = 0.0806 eV, P =

4.42 %). These calculations are compiled in Table S1.

5 Conclusion

In summary, our simulations show decreased effect of morphological details and that charge delo-

calization leads to significantly increased charge extraction in OPVs. We propose that the weak-

ening of energetic barriers, particularly in Coulomb interface traps leads to the efficient separation

of charges. Multiple length scales are involved in assessing device performance, such as micron-

scale morphological effects and the nanoscale hole-electron radius of interaction. Delocalization

increases the interaction radius, allowing charges to escape the electrostatic pull at the interface.

This occurs well under the length scale of the morphology. The escaped charge carriers can more

readily exit the system, increasing device parameters such as current, maximum power, and fill

factor.

The predicted fill factors in 3D are overall larger (average FF 58 ± 12%) and closer to exper-
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imental champion devices (FF ⇠60-70+%) than previous 2D thin film simulations[30], where the

predicted FF were unrealistically low for idealized devices. The predicted fill factors also depend

less on the morphology, suggesting new materials with highly delocalized carriers (i.e., along the

polymer chain, between chains, and between acceptor molecules) may be less sensitive to morpho-

logical differences between devices.

In thin films, the lattice easily becomes frustrated and the Coulomb interactions dominate the

energy landscape. In 3D systems, more pathways open up, alleviating some of the frustration, and

increasing the device efficiency. While the differences in morphology (domain size for isotropic

systems and geometrical structure for ideal systems) did not play an important role in device effi-

ciency, we note that a larger sample of morphologies, particularly those with mixed phases, must

be examined in the future with more factors to differentiate them.

Considering charges in ⇡-conjugated organic materials are known to be delocalized, this new

delocalized electrostatic model is a much more realistic and computationally-efficient method to

treat carrier-carrier interactions in organic solar cells and similar devices. Point charge models

dramatically overestimate the interfacial charge pinning, and mean-field methods significantly un-

derestimate such effects.

Seeking materials that can effectively allow charges to delocalize over multiple molecules,

especially near an interface, is a promising route to create efficient solar cells. While a material

with an overall higher dielectric constant will allow for a more efficient device (i.e., inorganic

materials), it may be that the weakening of Coulomb interactions near an interface is the dominant

player in organic materials and should be the focus of future materials design.
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The effects of charge delocalization on device efficiency is probed using mesoscale Monte
Carlo simulations of charge transport in idealized and isotropic two-phase morphologies.
Interfacial charge trapping is drastically reduced when Coulomb interactions are weakened through
moderate delocalization (1.0-2.0 nm). Morphological differences become less dominant as charges
delocalize.

charge transport
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Predicting Nanoscale Device Performance from Morphology
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Figure S1: Full isotropic morphologies.



0.
00

0.
75

1.
00

1.
25

1.
50 �

� [nm]

0

0.2

0.4

|i s
c|

[n
A
]

iso3

iso4

iso6

iso9

iso9p

0.
00

0.
75

1.
00

1.
25

1.
50 �

� [nm]

1.40

1.60

1.80

2.00

v o
c

[V
]

iso3

iso4

iso6

iso9

iso9p

0.
00

0.
75

1.
00

1.
25

1.
50 �

� [nm]

0

0.2

0.4

0.6

|p
th

|[
nW

]

iso3

iso4

iso6

iso9

iso9p

0.
00

0.
75

1.
00

1.
25

1.
50 �

� [nm]

0

0.1

0.2

0.3

|i m
p
|[

nA
]

iso3

iso4

iso6

iso9

iso9p

0.
00

0.
75

1.
00

1.
25

1.
50 �

� [nm]

0.00

0.50

1.00

1.50

2.00

v m
p

[V
]

iso3

iso4

iso6

iso9

iso9p

0.
00

0.
75

1.
00

1.
25

1.
50 �

� [nm]

0

0.1

0.2

0.3

|p
m

p
|[

nW
]

iso3

iso4

iso6

iso9

iso9p

Figure S2: All isotropic IV Curve parameters.

�(nm) r
hole

(nm) r
elec0(nm) r

elec1(nm) �r(nm) E0(eV) E1(eV) �E(eV) ��E P
acc

(%) H
ab

P
acc

(%)

0.00 0 1 2 1 -0.411 -0.206 0.186 7.184 0.076 0.025
0.25 0 1 2 1 -0.411 -0.206 0.186 7.183 0.076 0.025
0.50 0 1 2 1 -0.393 -0.206 0.167 6.460 0.156 0.052
0.75 0 1 2 1 -0.336 -0.204 0.112 4.341 1.302 0.434
1.00 0 1 2 1 -0.281 -0.196 0.065 2.496 8.243 2.748
1.25 0 1 2 1 -0.237 -0.183 0.034 1.313 26.913 8.971
1.50 0 1 2 1 -0.204 -0.168 0.015 0.599 54.958 18.319
0.00 0 1 3 2 -0.411 -0.137 0.254 9.836 0.005 0.000
0.25 0 1 3 2 -0.411 -0.137 0.254 9.835 0.005 0.000
0.50 0 1 3 2 -0.393 -0.137 0.236 9.112 0.011 0.000
0.75 0 1 3 2 -0.336 -0.137 0.179 6.933 0.097 0.004
1.00 0 1 3 2 -0.281 -0.137 0.124 4.800 0.823 0.030
1.25 0 1 3 2 -0.237 -0.135 0.082 3.180 4.159 0.154
1.50 0 1 3 2 -0.204 -0.131 0.053 2.041 12.993 0.481

Table S1: Energy of moving an electron near a hole.
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Figure S3: Full ideal morphologies.
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Figure S4: All ideal IV Curve parameters.
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Figure S5: Acceptance probability as a function of sigma.
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