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Turing patterns in a self-replicating mechanism
with a self-complementary template
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A variety of nonlinear chemical models, such as the Selkov—Schnakenberg, exhibit Turing patterns.
The Templator, which is based on a minimal autocatalytic monomer—dimer system, is a newer
two-variable model also able to show Turing patterns. Here we find that the dynamic behavior of the
Templator is quite similar to other models with cubic nonlinearities. This is demonstrated through
a series of computer simulations in two dimensions utilizing the cellular automata approach. The
selection of parameter values is based on linear stability analysis, which provides a relatively simple
method of predicting Turing pattern formation. The simulations reveal spot, labyrinth, and striped
patterns, in agreement with the predictions of the analysis. Other behaviors, such as honeycomb
patterns, are also observed. For some parameter values, we study transient spot replication. Our
findings strongly suggest that the Templator may belong to the same class of models previously
studied by Pearson. @000 American Institute of Physids§0021-9606)0)70229-7

I. INTRODUCTION et al,’® is a relatively new model based on experiments in-

pattem; in nature. Singe the vyork of Turing in the 1950s, use of computer simulations utilizing the cellular automata
theoretical work regarding spatial patterns has led to a bettee(pproach; this is discussed in Sec. Ill. The results of our

understa_mdmg of how these patterns arise from certaijy, ations are presented in Sec. IV and the conclusion in
mechanism$:* Pattern generation is seen everywhere, fromgg. \/

stripes on zebr4sto chemical reactions.Current explora-

tions of pattern formation range from cell differentiation in

developing embrydsto the macroscopic behavior of ameba || THE TEMPLATOR MODEL
clusters.

Improvements in technology have expanded the freedom The Templator is a minimal model based on autocata-
to study the dynamic behavior of models subjected to differlytic reactions observed in self-replicating molecules’
ent parameter values. Increases in computational speed ha®€lf-replicating molecular systems have been synthesized in
aided the simulation of models of partial differential equa-the laboratory by Rebelet al.’~?* One of Rebek's self-
tions (PDE’s); computational methods such as the cellular'eplicating system is represented schematically below,
automata have also facilitated the exploration of such mod- Kuncat
els. Also mathematical analyses, from Turing’s linear stabil- R+S— T, (D)
ity method to more elaborate schenfe¥ have facilitated
parameter selection for the simulations.

Turing patterns, which are temporally stable, have been
studied extensively for a variety of mechanisths'®gener- ~ where R can stand for adenine ribog&R), diaminotriazine
alized experimental methods for creating chemical systemxanthene(DIX), adenine ribose-2ZAR), adenine ribose-Z-
which exhibit such behavior now exit.Linear stability ~Na, (ZNAR), where Z is a blocking group like benzyloxy-
analysig® provides a simple and effective method of predict-carbonyl. The other molecule, T, can be naphthalene imide,
ing the behavior of a stable system subjected to a small pefNI), biphenyl imide, (Bl), thymine, (T). We notice that
turbation. In chemical models, which describe the formatiorthese molecules are self-complementary and when bound co-
of patterns, such perturbations arise from differences in difvalently form a product that can work as a template for the
fusion rates of the reactants. This class of “reaction-formation of more product except for DIXBI, which cannot
diffusion” (RD) systems is particularly prominent in the self-replicate. )
study of enzyme kinetics, as evidences by the large number In formulating the Templator, Peacockez et a
of well-studied models which exist today. have used a simplified monomer—dimer system, whereby the

The Templator mechanism proposed by Peacogbezo dimer serves as a template.

The mechanism for the Templator is as follows:

ktempl

R+S+T — T+T, )

|.,16
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kg
A+A—B, (4)
ko
2A+B— 2B, (5)
E
B—P. (6)

The monomerA, is continuously pumped from a source
and combines with itself to form a dimeB, This dimer then  ro
catalyzes its own production. Continual removal via some
enzymatic path is also assumed.

By using mass actions laws and by rescaling parameter:
of the system to produce dimensionless quantifiethe
Templator is reduced to a set of differential equations de-
scribing the change in concentration of the monomer and the
dimer,

a=rqo—2a’b—2k,a?, (7a) 0.05 0.1 0.15 0.2 0.25

(7b) FIG. 1. Diagram in parameter space. Using linear stability analysis, we
obtained a set of three conditions required for stable Turing patterns. Lines
a, b, and c depict the null sets of these conditions. Region T represent the

wherea andb refer to the monomer and dimer, respectively, linear analysis prediction of parameter values able to generate Turing pat-

ro represents the rate of input of the mononigrrefers to  tms.
the rate of uncatalyzed formation of the dimer, and the last
term refers to an enzymatic removal of the dimer. This lashoise into the system, but this can be minimized by increas-
term is necessary for the existence of stable limit cytles. ing the accuracy of the fixed-point discretization in time or
space It is relatively simple to create fixed-point arithmetic
and modular grids for CA by using the programming lan-
guage Ada. The states are discretized by fixing the range of
Several methods exist for solving reaction-diffusion values and the precision of the implementation.
problems. Cellular automaf&€A) simplifies calculations by The range of concentration values for E§) is set at
using discrete time, space, and state values, which are easiypproximately the same concentration range observed for the
processed by a computer. Several CA methods for solvingeaction ODE’s. This requires that the diffusion operator re-
reaction-diffusion systems rely on the qualitative behavior ofmnains within the bounds of this range. Normally the bounds
the underlying partial differential equatiofs3° A class of ~are made much larger than necessary and capped, preventing
automata introduced by Weimer and Boon uses careful dighe system from diverging while running a simulation. How-
cretization of values to minimize errors and provides veryever, the limits are usually unnecessary for most parameters.

A2 2h_
b=ab+k,ab (K+D)’

IIl. COMPUTER SIMULATIONS

fast quantitative solutions for RD systeR153! The use of a For simplicity, the operators are also applied indepen-

lookup table for the reaction term and fixed-point arithmeticdently using higher precision calculation, then combined

increases calculating speeds significantly. while applying the probabilistic rounding. This produces a
A reaction-diffusion system is essentially a partial differ- solution to the partial differential equation consistent with

ential equation, the necessary discretization of time, space, and state needed

in CA. The approach differs only slightly from finite-
an(r.t) =DV2n(r,t)+ f(n(r,1)) (8) difference methods adding the restriction of discrete states.
ot ' T

wherer gives the spatial location arfdn) is the rate law of IV. TURING PATTERNS

the reaction system in question. In general, with multispecies  Simulations were run on the Templator model fixikg
reactions, the valua is a concentration vector for each spe- =0.01 and using, andK values within the Turing, T, zone
cies. The diffusion operator is easily approximated by manydepicted in Fig. 1. The results of the simulations agree with
techniques, including a very efficient method using squarehe prediction that only the lowest modes are exhibited in
masks?® The reaction operatof(n), is generally a nonlinear this region.
function. These equations can be solved by any method, but, As the pumping of the monomer () is decreased the
in our experience, a first-order approximation is simple andsystem approaches the limit of spatial stability. Near this
most rapid. border, the model passes through a transient striped stage
While the operator for diffusion does not need to con-before breaking into spots with a hexagonal symmdity,
sider discretization, by nature the nonlinear reaction operatois r is further decreased, the spot patterns become higher-
must provide for some sort of operatbr(Atf(x)) to trun-  ordered. In Fig. 2 we compare two stable Turing patterns for
cate the reaction term. One solution which preserves accu«=0.10 and different values afy,. The level of shading
racy on averageuses a probabilistic rule. This introduces represents the concentration of the dimer, with lighter shades
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(a) t=5

(a) ro=1.55, t=1020

e e e g ] (c) t=T7 (d) t=8

(e) t=9 (f) t=1320

FIG. 3. Time evolution of a spontaneous generated spot from a homoge-
neous initial condition in a 128128 grid forK =0.05 andr,=0.65.

tiply until a stable hexagonal pattehh, is formed. Figure 3
provides an example of this behavior, using the homoge-
neous initial condition. Evidence of this evolution may sug-
gest the capacity of the Templator to exhibit self-replicating
spots®?
FIG. 2. Transition from spots to stripes as we vagyfor homogeneous Figures 4 show the initial eVOIUtlona}ry §tage§ Of,the
initial condition andK = 0.10. Templator, withK=0.05 andry=0.65. This simulation is
the same as the one seen in Fig. 3, except for a larger grid
(256%x256) and the use of a central square for the initial
corresponding to higher concentrations. Periodic boundargondition. Here the model also breaks into four spots, but
conditions were implemented in all simulations. without the transient ring as in Fig. 3. These spots then un-
The Templator shows a similar series of staHlg pat-  dergo multiple replications before settling to a hexagdthgl
terns under different values of, and K=0.05. The evolu- pattern as in Fig. 2. In Fig.(d) we notice spontaneous ap-
tion of the model, however, is different from simulations pearance of spots similar to those in Fig. 3.
seen in Fig. 2. Here the simulation initially evolves with the Finally for the Templator, we have observed the evolu-
spontaneous formation of a spot, followed by the growth oftion of other patterns at high values Kf For example an
the spot, the formation of a ring from the spot, and the fraginverted spot, or “honeycomb” patteri .., is observed for
mentation of the ring into four spots. These spots then mulK=0.25 and depicted in Fig. 5.

(b) ro=1.60, t=289
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(SSGS (Refs. 33,34 type models and the Brusselat8iThe
major difference between the templator model and the other
models is in the character of the nonlinearities. The templa-
tor model has a cubic nonlinear term, which is quadratic in
the inhibitor and linear in the activator. In contrast, the SSGS
type models and the Brusselator have a cubic nonlinearity
which is linear in the inhibitor and quadratic in the activator.
Also, the degradation term, which is linear in the SSGS type
models and the Brusselator, is nonlinear in the templator and
shows saturation for large values of the activator. Despite

(a) t=4 (b) t=6 these differences, the templator shows similar Turing pat-

terns as the other models. Thus it is possible that the templa-

tor model belongs to the same class of two variable models,
like the SSGS, studied by Peasenall!
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