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Turing patterns in a self-replicating mechanism
with a self-complementary template
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Department of Chemistry, Williams College, Williamstown, Massachusetts 01267

~Received 13 March 2000; accepted 1 May 2000!

A variety of nonlinear chemical models, such as the Selkov–Schnakenberg, exhibit Turing patterns.
The Templator, which is based on a minimal autocatalytic monomer–dimer system, is a newer
two-variable model also able to show Turing patterns. Here we find that the dynamic behavior of the
Templator is quite similar to other models with cubic nonlinearities. This is demonstrated through
a series of computer simulations in two dimensions utilizing the cellular automata approach. The
selection of parameter values is based on linear stability analysis, which provides a relatively simple
method of predicting Turing pattern formation. The simulations reveal spot, labyrinth, and striped
patterns, in agreement with the predictions of the analysis. Other behaviors, such as honeycomb
patterns, are also observed. For some parameter values, we study transient spot replication. Our
findings strongly suggest that the Templator may belong to the same class of models previously
studied by Pearson. ©2000 American Institute of Physics.@S0021-9606~00!70229-7#
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I. INTRODUCTION

In recent years, several theoretical models have been
troduced to provide insight into the development of spa
patterns in nature. Since the work of Turing in the 19501

theoretical work regarding spatial patterns has led to a be
understanding of how these patterns arise from cer
mechanisms.2,3 Pattern generation is seen everywhere, fr
stripes on zebras4 to chemical reactions.5 Current explora-
tions of pattern formation range from cell differentiation
developing embryos6 to the macroscopic behavior of ameb
clusters.

Improvements in technology have expanded the freed
to study the dynamic behavior of models subjected to diff
ent parameter values. Increases in computational speed
aided the simulation of models of partial differential equ
tions ~PDE’s!; computational methods such as the cellu
automata have also facilitated the exploration of such m
els. Also mathematical analyses, from Turing’s linear sta
ity method to more elaborate schemes,7–10 have facilitated
parameter selection for the simulations.

Turing patterns, which are temporally stable, have b
studied extensively for a variety of mechanisms;11–13 gener-
alized experimental methods for creating chemical syste
which exhibit such behavior now exist.14 Linear stability
analysis15 provides a simple and effective method of predi
ing the behavior of a stable system subjected to a small
turbation. In chemical models, which describe the format
of patterns, such perturbations arise from differences in
fusion rates of the reactants. This class of ‘‘reactio
diffusion’’ ~RD! systems is particularly prominent in th
study of enzyme kinetics, as evidences by the large num
of well-studied models which exist today.

The Templator mechanism proposed by Peacock-Lo´pez
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et al.,16 is a relatively new model based on experiments
volving autocatalytic biochemical reactions.17 A description
of this mechanism is discussed in Sec. II. Confirmation
Turing patterns, in the form of stripes, was achieved throu
use of computer simulations utilizing the cellular automa
approach; this is discussed in Sec. III. The results of
simulations are presented in Sec. IV and the conclusion
Sec. V.

II. THE TEMPLATOR MODEL

The Templator is a minimal model based on autoca
lytic reactions observed in self-replicating molecules.17–27

Self-replicating molecular systems have been synthesize
the laboratory by Rebeket al.17–22 One of Rebek’s self-
replicating system is represented schematically below,

R1S →
kuncat

T, ~1!

R1S1T →
ktempl

T1T, ~2!

where R can stand for adenine ribose,~AR!, diaminotriazine
xanthene,~DIX !, adenine ribose-Z,~ZAR!, adenine ribose-Z-
N2, ~ZNAR!, where Z is a blocking group like benzyloxy
carbonyl. The other molecule, T, can be naphthalene im
~NI!, biphenyl imide, ~BI!, thymine, ~T!. We notice that
these molecules are self-complementary and when bound
valently form a product that can work as a template for
formation of more product except for DIXBI, which canno
self-replicate.

In formulating the Templator, Peacock-Lo´pez et al.,16

have used a simplified monomer–dimer system, whereby
dimer serves as a template.

The mechanism for the Templator is as follows:

A0→
k0

A, ~3!
il:
3 © 2000 American Institute of Physics
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A1A→
k1

B, ~4!

2A1B→
k2

2B, ~5!

B→
E

P. ~6!

The monomer,A, is continuously pumped from a sourc
and combines with itself to form a dimer,B. This dimer then
catalyzes its own production. Continual removal via so
enzymatic path is also assumed.

By using mass actions laws and by rescaling parame
of the system to produce dimensionless quantities,16 the
Templator is reduced to a set of differential equations
scribing the change in concentration of the monomer and
dimer,

ȧ5r 022a2b22kua2, ~7a!

ḃ5a2b1kua2b2
b

~K1b!
, ~7b!

wherea andb refer to the monomer and dimer, respective
r 0 represents the rate of input of the monomer,ku refers to
the rate of uncatalyzed formation of the dimer, and the
term refers to an enzymatic removal of the dimer. This l
term is necessary for the existence of stable limit cycles16

III. COMPUTER SIMULATIONS

Several methods exist for solving reaction-diffusi
problems. Cellular automata~CA! simplifies calculations by
using discrete time, space, and state values, which are e
processed by a computer. Several CA methods for solv
reaction-diffusion systems rely on the qualitative behavior
the underlying partial differential equations.28,30 A class of
automata introduced by Weimer and Boon uses careful
cretization of values to minimize errors and provides ve
fast quantitative solutions for RD systems.29–31 The use of a
lookup table for the reaction term and fixed-point arithme
increases calculating speeds significantly.

A reaction-diffusion system is essentially a partial diffe
ential equation,

]n~r ,t !

]t
5D¹2n~r ,t !1 f ~n~r ,t !!, ~8!

wherer gives the spatial location andf (n) is the rate law of
the reaction system in question. In general, with multispec
reactions, the valuen is a concentration vector for each sp
cies. The diffusion operator is easily approximated by ma
techniques, including a very efficient method using squ
masks.28 The reaction operator,f (n), is generally a nonlinea
function. These equations can be solved by any method,
in our experience, a first-order approximation is simple a
most rapid.

While the operator for diffusion does not need to co
sider discretization, by nature the nonlinear reaction oper
must provide for some sort of operatorFT(Dt f (x)) to trun-
cate the reaction term. One solution which preserves a
racy on averageuses a probabilistic rule. This introduce
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noise into the system, but this can be minimized by incre
ing the accuracy of the fixed-point discretization in time
space.31 It is relatively simple to create fixed-point arithmet
and modular grids for CA by using the programming la
guage Ada. The states are discretized by fixing the rang
values and the precision of the implementation.

The range of concentration values for Eq.~8! is set at
approximately the same concentration range observed fo
reaction ODE’s. This requires that the diffusion operator
mains within the bounds of this range. Normally the boun
are made much larger than necessary and capped, preve
the system from diverging while running a simulation. How
ever, the limits are usually unnecessary for most parame

For simplicity, the operators are also applied indepe
dently using higher precision calculation, then combin
while applying the probabilistic rounding. This produces
solution to the partial differential equation consistent w
the necessary discretization of time, space, and state ne
in CA. The approach differs only slightly from finite
difference methods adding the restriction of discrete stat

IV. TURING PATTERNS

Simulations were run on the Templator model fixingku

50.01 and usingr 0 andK values within the Turing, T, zone
depicted in Fig. 1. The results of the simulations agree w
the prediction that only the lowest modes are exhibited
this region.

As the pumping of the monomer (r 0) is decreased the
system approaches the limit of spatial stability. Near t
border, the model passes through a transient striped s
before breaking into spots with a hexagonal symmetry,H0.
As r 0 is further decreased, the spot patterns become hig
ordered. In Fig. 2 we compare two stable Turing patterns
K50.10 and different values ofr 0. The level of shading
represents the concentration of the dimer, with lighter sha

FIG. 1. Diagram in parameter space. Using linear stability analysis,
obtained a set of three conditions required for stable Turing patterns. L
a, b, and c depict the null sets of these conditions. Region T represen
linear analysis prediction of parameter values able to generate Turing
terns.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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corresponding to higher concentrations. Periodic bound
conditions were implemented in all simulations.

The Templator shows a similar series of stableH0 pat-
terns under different values ofr 0 and K50.05. The evolu-
tion of the model, however, is different from simulation
seen in Fig. 2. Here the simulation initially evolves with t
spontaneous formation of a spot, followed by the growth
the spot, the formation of a ring from the spot, and the fr
mentation of the ring into four spots. These spots then m

FIG. 2. Transition from spots to stripes as we varyr 0 for homogeneous
initial condition andK50.10.
Downloaded 26 Feb 2003 to 129.105.122.197. Redistribution subject to 
ry

f
-
l-

tiply until a stable hexagonal patternH0 is formed. Figure 3
provides an example of this behavior, using the homo
neous initial condition. Evidence of this evolution may su
gest the capacity of the Templator to exhibit self-replicati
spots.32

Figures 4 show the initial evolutionary stages of t
Templator, withK50.05 andr 050.65. This simulation is
the same as the one seen in Fig. 3, except for a larger
~2563256! and the use of a central square for the init
condition. Here the model also breaks into four spots,
without the transient ring as in Fig. 3. These spots then
dergo multiple replications before settling to a hexagonalH0

pattern as in Fig. 2. In Fig. 4~c! we notice spontaneous ap
pearance of spots similar to those in Fig. 3.

Finally for the Templator, we have observed the evo
tion of other patterns at high values ofK. For example an
inverted spot, or ‘‘honeycomb’’ pattern,Hp , is observed for
K50.25 and depicted in Fig. 5.

FIG. 3. Time evolution of a spontaneous generated spot from a hom
neous initial condition in a 1283128 grid forK50.05 andr 050.65.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



er
e
in
th
r
c

ther
la-
in

GS
rity
r.
pe
and
ite
at-
pla-
els,

day

ure

ce

oc.

ds

-

2006 J. Chem. Phys., Vol. 113, No. 5, 1 August 2000 Tsai, Hutchison, and Peacock-López
V. CONCLUSIONS

For the new templator model we have studied num
cally and analytically the Turing patterns associated to a s
replicating dimer with a self-complementary template. Us
the cellular automata approach, we observed spots wi
hexagonal symmetry, stripes and other patterns simila
those observed in the Selkov–Schnakenberg–Gray–S

FIG. 4. Time evolution of a central square initial condition in a 2563256
grid for K50.05 andr 050.65.

FIG. 5. Final honeycombHp pattern in a 2563256 grid for K50.25 and
r 051.56.
Downloaded 26 Feb 2003 to 129.105.122.197. Redistribution subject to 
i-
lf-
g

a
to
ott

~SSGS! ~Refs. 33,34! type models and the Brusselator.10 The
major difference between the templator model and the o
models is in the character of the nonlinearities. The temp
tor model has a cubic nonlinear term, which is quadratic
the inhibitor and linear in the activator. In contrast, the SS
type models and the Brusselator have a cubic nonlinea
which is linear in the inhibitor and quadratic in the activato
Also, the degradation term, which is linear in the SSGS ty
models and the Brusselator, is nonlinear in the templator
shows saturation for large values of the activator. Desp
these differences, the templator shows similar Turing p
terns as the other models. Thus it is possible that the tem
tor model belongs to the same class of two variable mod
like the SSGS, studied by Peasonet al.11
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