Working paper Open Access

Trusted Research Environments (TRE) Green Paper

Tim Hubbard; Gerry Reilly; Susheel Varma; David Seymour


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4594704</identifier>
  <creators>
    <creator>
      <creatorName>Tim Hubbard</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1767-9318</nameIdentifier>
      <affiliation>HDR UK</affiliation>
    </creator>
    <creator>
      <creatorName>Gerry Reilly</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1427-3598</nameIdentifier>
      <affiliation>HDR UK</affiliation>
    </creator>
    <creator>
      <creatorName>Susheel Varma</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1687-2754</nameIdentifier>
      <affiliation>HDR UK</affiliation>
    </creator>
    <creator>
      <creatorName>David Seymour</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1687-2754</nameIdentifier>
      <affiliation>HDR UK</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Trusted Research Environments (TRE) Green Paper</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Trusted Research Environments</subject>
    <subject>Data Safe Havens</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-07-21</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Working paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4594704</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4594703</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/hdruk</relatedIdentifier>
  </relatedIdentifiers>
  <version>2.0.0</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode">Creative Commons Attribution Non Commercial Share Alike 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Project&lt;/p&gt;

&lt;p&gt;Aligning approach to Trusted Research Environments&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Share this page&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Data Safe Havens are an essential way of managing risk of unauthorised re-identification of individuals from de-identified data. This risk heightens with increased data linkage across a wider range of data sets. To date, most of the focus of Data Safe Havens has been on the people, processes and technology required to deliver effective Information Security.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Our aim is for Alliance Trusted Research Environments (TRE) to be more than Data Safe Havens by meeting researchers&amp;rsquo; technical and functionality requirements both now and in the future, whilst providing confidence to data custodians and the public through implementing a rigorous system of data access based on an evolution of the Five Safes model. This evolution is required to meet research needs for Machine Learning capability, High Performance Computing or High Throughput Computing e.g., for analysis of genetic and imaging data, and also to support the convergence of research and care to enable a future of personalised medicine.&amp;nbsp;&lt;/p&gt;</description>
  </descriptions>
</resource>
111
71
views
downloads
All versions This version
Views 111111
Downloads 7171
Data volume 324.6 MB324.6 MB
Unique views 101101
Unique downloads 6666

Share

Cite as