Dataset Open Access
Baran, Erdal; Dimitrov, Dimitar
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/0a1cd686-f5e1-4cb0-a55f-e47af50dbde4/TweetsCOV19_062020_122020.n3.gz" }, "checksum": "md5:2b40fbbc223f1e2fa497c3987f15dfdc", "bucket": "0a1cd686-f5e1-4cb0-a55f-e47af50dbde4", "key": "TweetsCOV19_062020_122020.n3.gz", "type": "gz", "size": 2063924726 }, { "links": { "self": "https://zenodo.org/api/files/0a1cd686-f5e1-4cb0-a55f-e47af50dbde4/TweetsCOV19_062020_122020.tsv.gz" }, "checksum": "md5:9d3b2f63d3d8c9d3a3898360543efcdc", "bucket": "0a1cd686-f5e1-4cb0-a55f-e47af50dbde4", "key": "TweetsCOV19_062020_122020.tsv.gz", "type": "gz", "size": 1003769666 } ], "owners": [ 102132 ], "doi": "10.5281/zenodo.4593524", "stats": { "version_unique_downloads": 252.0, "unique_views": 1168.0, "views": 1237.0, "version_views": 1237.0, "unique_downloads": 252.0, "version_unique_views": 1168.0, "volume": 430233108118.0, "version_downloads": 323.0, "downloads": 323.0, "version_volume": 430233108118.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.4593524", "conceptdoi": "https://doi.org/10.5281/zenodo.4593523", "bucket": "https://zenodo.org/api/files/0a1cd686-f5e1-4cb0-a55f-e47af50dbde4", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4593523.svg", "html": "https://zenodo.org/record/4593524", "latest_html": "https://zenodo.org/record/4593524", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4593524.svg", "latest": "https://zenodo.org/api/records/4593524" }, "conceptdoi": "10.5281/zenodo.4593523", "created": "2021-03-10T15:12:24.222549+00:00", "updated": "2021-03-24T23:16:28.446518+00:00", "conceptrecid": "4593523", "revision": 5, "id": 4593524, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.4593524", "description": "<p><strong><a href=\"https://data.gesis.org/tweetscov19/\">TweetsCOV19</a></strong><strong> </strong>is a semantically annotated corpus of Tweets about the COVID-19 pandemic. It is a subset of <a href=\"https://data.gesis.org/tweetskb\">TweetsKB</a> and aims at capturing online discourse about various aspects of the pandemic and its societal impact. <strong>Metadata</strong> information about the tweets as well as extracted <strong>entities</strong>, <strong>sentiments</strong>, <strong>hashtags</strong>, <strong>user mentions</strong>, and <strong>resolved URLs </strong>are exposed in RDF using established RDF/S vocabularies*.</p>\n\n<p>We also provide a <em><strong>tab-separated values (tsv)</strong></em> version of the dataset. Each line contains features of a tweet instance. Features are separated by tab character ("\\t"). The following list indicate the feature indices:</p>\n\n<ol>\n\t<li>Tweet Id: Long.</li>\n\t<li>Username: String. Encrypted for privacy issues*.</li>\n\t<li>Timestamp: Format ( "EEE MMM dd HH:mm:ss Z yyyy" ).</li>\n\t<li>#Followers: Integer.</li>\n\t<li>#Friends: Integer.</li>\n\t<li>#Retweets: Integer.</li>\n\t<li>#Favorites: Integer.</li>\n\t<li>Entities: String. For each entity, we aggregated the original text, the annotated entity and the produced score from <a href=\"https://github.com/yahoo/FEL\">FEL</a> library. Each entity is separated from another entity by char ";". Also, each entity is separated by char ":" in order to store "original_text:annotated_entity:score;". If FEL did not find any entities, we have stored "null;".</li>\n\t<li>Sentiment: String. <a href=\"http://sentistrength.wlv.ac.uk/\">SentiStrength</a> produces a score for positive (1 to 5) and negative (-1 to -5) sentiment. We splitted these two numbers by whitespace char " ". Positive sentiment was stored first and then negative sentiment (i.e. "2 -1").</li>\n\t<li>Mentions: String. If the tweet contains mentions, we remove the char "@" and concatenate the mentions with whitespace char " ". If no mentions appear, we have stored "null;".</li>\n\t<li>Hashtags: String. If the tweet contains hashtags, we remove the char "#" and concatenate the hashtags with whitespace char " ". If no hashtags appear, we have stored "null;".</li>\n\t<li>URLs: String: If the tweet contains URLs, we concatenate the URLs using ":-: ". If no URLs appear, we have stored "null;"</li>\n</ol>\n\n<p>To extract the dataset from <a href=\"https://data.gesis.org/tweetskb\">TweetsKB</a>, we compiled a seed list of 268 COVID-19-related <a href=\"https://data.gesis.org/tweetscov19/keywords_v1.1.txt\">keywords</a>.</p>\n\n<p><em>* For the sake of privacy, we anonymize user IDs and we do not provide the text of the tweets.</em></p>", "license": { "id": "CC-BY-4.0" }, "title": "TweetsCOV19 - A Semantically Annotated Corpus of Tweets About the COVID-19 Pandemic (Part 3, June 2020 - December 2020)", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "4593523" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "4593524" } } ] }, "communities": [ { "id": "covid-19" }, { "id": "twitter-datasets" } ], "keywords": [ "twitter", "tweets", "linked data", "microblogging", "RDF", "csv", "covid-19", "coronavirus" ], "publication_date": "2021-03-10", "creators": [ { "name": "Baran, Erdal" }, { "name": "Dimitrov, Dimitar" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "url", "identifier": "https://data.gesis.org/tweetscov19/", "relation": "isDocumentedBy", "resource_type": "dataset" }, { "scheme": "doi", "identifier": "10.5281/zenodo.4593523", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 1,237 | 1,237 |
Downloads | 323 | 323 |
Data volume | 430.2 GB | 430.2 GB |
Unique views | 1,168 | 1,168 |
Unique downloads | 252 | 252 |