Dataset Open Access
Baran, Erdal; Dimitrov, Dimitar
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/748603fe-bde3-4d77-81c4-b68807d4c6d3/TweetsCOV19_052020.n3.gz" }, "checksum": "md5:e08e4b873841e737cb8cf1835370af4d", "bucket": "748603fe-bde3-4d77-81c4-b68807d4c6d3", "key": "TweetsCOV19_052020.n3.gz", "type": "gz", "size": 404722462 }, { "links": { "self": "https://zenodo.org/api/files/748603fe-bde3-4d77-81c4-b68807d4c6d3/TweetsCOV19_052020.tsv.gz" }, "checksum": "md5:4e8fc16a2bea5cd3421578522fb87f22", "bucket": "748603fe-bde3-4d77-81c4-b68807d4c6d3", "key": "TweetsCOV19_052020.tsv.gz", "type": "gz", "size": 197659685 } ], "owners": [ 102132 ], "doi": "10.5281/zenodo.4593502", "stats": { "version_unique_downloads": 273.0, "unique_views": 1028.0, "views": 1078.0, "version_views": 1078.0, "unique_downloads": 273.0, "version_unique_views": 1028.0, "volume": 88202455958.0, "version_downloads": 353.0, "downloads": 353.0, "version_volume": 88202455958.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.4593502", "conceptdoi": "https://doi.org/10.5281/zenodo.4593501", "bucket": "https://zenodo.org/api/files/748603fe-bde3-4d77-81c4-b68807d4c6d3", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4593501.svg", "html": "https://zenodo.org/record/4593502", "latest_html": "https://zenodo.org/record/4593502", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4593502.svg", "latest": "https://zenodo.org/api/records/4593502" }, "conceptdoi": "10.5281/zenodo.4593501", "created": "2021-03-10T15:11:35.241964+00:00", "updated": "2021-03-11T00:27:25.465187+00:00", "conceptrecid": "4593501", "revision": 4, "id": 4593502, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.4593502", "description": "<p><strong><a href=\"https://data.gesis.org/tweetscov19/\">TweetsCOV19</a></strong><strong> </strong>is a semantically annotated corpus of Tweets about the COVID-19 pandemic. It is a subset of <a href=\"https://data.gesis.org/tweetskb\">TweetsKB</a> and aims at capturing online discourse about various aspects of the pandemic and its societal impact. <strong>Metadata</strong> information about the tweets as well as extracted <strong>entities</strong>, <strong>sentiments</strong>, <strong>hashtags</strong>, <strong>user mentions</strong>, and <strong>resolved URLs </strong>are exposed in RDF using established RDF/S vocabularies*.</p>\n\n<p>We also provide a <em><strong>tab-separated values (tsv)</strong></em> version of the dataset. Each line contains features of a tweet instance. Features are separated by tab character ("\\t"). The following list indicate the feature indices:</p>\n\n<ol>\n\t<li>Tweet Id: Long.</li>\n\t<li>Username: String. Encrypted for privacy issues*.</li>\n\t<li>Timestamp: Format ( "EEE MMM dd HH:mm:ss Z yyyy" ).</li>\n\t<li>#Followers: Integer.</li>\n\t<li>#Friends: Integer.</li>\n\t<li>#Retweets: Integer.</li>\n\t<li>#Favorites: Integer.</li>\n\t<li>Entities: String. For each entity, we aggregated the original text, the annotated entity and the produced score from <a href=\"https://github.com/yahoo/FEL\">FEL</a> library. Each entity is separated from another entity by char ";". Also, each entity is separated by char ":" in order to store "original_text:annotated_entity:score;". If FEL did not find any entities, we have stored "null;".</li>\n\t<li>Sentiment: String. <a href=\"http://sentistrength.wlv.ac.uk/\">SentiStrength</a> produces a score for positive (1 to 5) and negative (-1 to -5) sentiment. We splitted these two numbers by whitespace char " ". Positive sentiment was stored first and then negative sentiment (i.e. "2 -1").</li>\n\t<li>Mentions: String. If the tweet contains mentions, we remove the char "@" and concatenate the mentions with whitespace char " ". If no mentions appear, we have stored "null;".</li>\n\t<li>Hashtags: String. If the tweet contains hashtags, we remove the char "#" and concatenate the hashtags with whitespace char " ". If no hashtags appear, we have stored "null;".</li>\n\t<li>URLs: String: If the tweet contains URLs, we concatenate the URLs using ":-: ". If no URLs appear, we have stored "null;"</li>\n</ol>\n\n<p>To extract the dataset from <a href=\"https://data.gesis.org/tweetskb\">TweetsKB</a>, we compiled a seed list of 268 COVID-19-related <a href=\"https://data.gesis.org/tweetscov19/keywords.txt\">keywords</a>.</p>\n\n<p><em>* For the sake of privacy, we anonymize user IDs and we do not provide the text of the tweets.</em></p>", "license": { "id": "CC-BY-4.0" }, "title": "TweetsCOV19 - A Semantically Annotated Corpus of Tweets About the COVID-19 Pandemic (Part 2, May 2020)", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "4593501" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "4593502" } } ] }, "communities": [ { "id": "covid-19" }, { "id": "twitter-datasets" } ], "keywords": [ "twitter", "tweets", "linked data", "microblogging", "RDF", "csv", "covid-19", "coronavirus" ], "publication_date": "2021-03-10", "creators": [ { "name": "Baran, Erdal" }, { "name": "Dimitrov, Dimitar" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "url", "identifier": "https://data.gesis.org/tweetscov19/", "relation": "isDocumentedBy", "resource_type": "dataset" }, { "scheme": "doi", "identifier": "10.5281/zenodo.4593501", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 1,078 | 1,078 |
Downloads | 353 | 353 |
Data volume | 88.2 GB | 88.2 GB |
Unique views | 1,028 | 1,028 |
Unique downloads | 273 | 273 |