Dataset Open Access
Baran, Erdal; Dimitrov, Dimitar
{ "publisher": "Zenodo", "DOI": "10.5281/zenodo.4593502", "author": [ { "family": "Baran, Erdal" }, { "family": "Dimitrov, Dimitar" } ], "issued": { "date-parts": [ [ 2021, 3, 10 ] ] }, "abstract": "<p><strong><a href=\"https://data.gesis.org/tweetscov19/\">TweetsCOV19</a></strong><strong> </strong>is a semantically annotated corpus of Tweets about the COVID-19 pandemic. It is a subset of <a href=\"https://data.gesis.org/tweetskb\">TweetsKB</a> and aims at capturing online discourse about various aspects of the pandemic and its societal impact. <strong>Metadata</strong> information about the tweets as well as extracted <strong>entities</strong>, <strong>sentiments</strong>, <strong>hashtags</strong>, <strong>user mentions</strong>, and <strong>resolved URLs </strong>are exposed in RDF using established RDF/S vocabularies*.</p>\n\n<p>We also provide a <em><strong>tab-separated values (tsv)</strong></em> version of the dataset. Each line contains features of a tweet instance. Features are separated by tab character ("\\t"). The following list indicate the feature indices:</p>\n\n<ol>\n\t<li>Tweet Id: Long.</li>\n\t<li>Username: String. Encrypted for privacy issues*.</li>\n\t<li>Timestamp: Format ( "EEE MMM dd HH:mm:ss Z yyyy" ).</li>\n\t<li>#Followers: Integer.</li>\n\t<li>#Friends: Integer.</li>\n\t<li>#Retweets: Integer.</li>\n\t<li>#Favorites: Integer.</li>\n\t<li>Entities: String. For each entity, we aggregated the original text, the annotated entity and the produced score from <a href=\"https://github.com/yahoo/FEL\">FEL</a> library. Each entity is separated from another entity by char ";". Also, each entity is separated by char ":" in order to store "original_text:annotated_entity:score;". If FEL did not find any entities, we have stored "null;".</li>\n\t<li>Sentiment: String. <a href=\"http://sentistrength.wlv.ac.uk/\">SentiStrength</a> produces a score for positive (1 to 5) and negative (-1 to -5) sentiment. We splitted these two numbers by whitespace char " ". Positive sentiment was stored first and then negative sentiment (i.e. "2 -1").</li>\n\t<li>Mentions: String. If the tweet contains mentions, we remove the char "@" and concatenate the mentions with whitespace char " ". If no mentions appear, we have stored "null;".</li>\n\t<li>Hashtags: String. If the tweet contains hashtags, we remove the char "#" and concatenate the hashtags with whitespace char " ". If no hashtags appear, we have stored "null;".</li>\n\t<li>URLs: String: If the tweet contains URLs, we concatenate the URLs using ":-: ". If no URLs appear, we have stored "null;"</li>\n</ol>\n\n<p>To extract the dataset from <a href=\"https://data.gesis.org/tweetskb\">TweetsKB</a>, we compiled a seed list of 268 COVID-19-related <a href=\"https://data.gesis.org/tweetscov19/keywords.txt\">keywords</a>.</p>\n\n<p><em>* For the sake of privacy, we anonymize user IDs and we do not provide the text of the tweets.</em></p>", "title": "TweetsCOV19 - A Semantically Annotated Corpus of Tweets About the COVID-19 Pandemic (Part 2, May 2020)", "type": "dataset", "id": "4593502" }
All versions | This version | |
---|---|---|
Views | 1,078 | 1,078 |
Downloads | 353 | 353 |
Data volume | 88.2 GB | 88.2 GB |
Unique views | 1,028 | 1,028 |
Unique downloads | 273 | 273 |