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Abstract—Data exchange between multiple renewable energy
power plant owners can lead to an improvement in forecast skill
thanks to the spatio-temporal dependencies in time series data.
However, owing to business competitive factors, these different
owners might be unwilling to share their data. In order to
tackle this privacy issue, this paper formulates a novel privacy-
preserving framework that combines data transformation tech-
niques with the alternating direction method of multipliers.
This approach allows not only to estimate the model in a
distributed fashion but also to protect data privacy, coefficients
and covariance matrix. Besides, asynchronous communication
between peers is addressed in the model fitting, and two different
collaborative schemes are considered: centralized and peer-to-
peer. The results for a solar energy dataset show that the proposed
method is robust to privacy breaches and communication failures,
and delivers a forecast skill comparable to a model without
privacy protection.

Index Terms—Renewable energy, forecasting, vector autore-
gression, privacy-preserving, distributed learning

I. INTRODUCTION

THE forecast skill of renewable energy sources (RES)
has improved over the past two decades through R&D

activities across the complete model chain, i.e., from numerical
weather predictions (NWP) to statistical learning methods
that convert weather variables into power forecasts [1]. The
need to bring forecast skill to significantly higher levels is
widely recognized in the majority of roadmaps that deal with
high RES integration scenarios for the next decades. This is
expected not only to facilitate RES integration in the system
operation and electricity markets but also to reduce the need
for flexibility and associated investment costs on remedies that
aim to hedge RES variability and uncertainty like storage,
demand response, and others.

In this context, intraday and hour-ahead electricity markets
are becoming increasingly important to handle RES uncer-
tainty and thus accurate hours-ahead forecasts are essential.
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Recent findings showed that feature engineering, combined
with statistical models, can extract relevant information from
spatially distributed weather and RES power time series and
improve hours-ahead forecast skill [1]. Indeed, for very short-
term lead times (from 15 minutes to 6 hours ahead), the vector
autoregressive (VAR) model, when compared to univariate
time series models, has shown competitive results for wind [2]
and solar [3] power forecasting. Alternative models are also
being applied to this problem, most notably deep learning
techniques such as convolutional neural networks or long
short-term memory networks [4]. While there may always
be a debate about the interest and relevance of statistical
modeling vs. machine learning approaches, VAR models have
the advantages of flexibility, interpretability, acceptability by
practitioners, as well as robustness in terms of forecast skill.

Four important challenges for RES forecasting have been
identified when using VAR: (a) sparse structure of the coef-
ficients’ matrix [5], (b) uncertainty forecasting [6], (c) dis-
tributed [7], and online learning [8], and (d) data privacy.

Data privacy is a critical barrier to the application of
collaborative forecasting models. Although multivariate time
series models offer forecast skill improvement, the lack of
privacy-preserving mechanisms makes data owners unwilling
to cooperate. For instance, in the VAR model, the covariates
are the lags of the target variable of each RES site, which
means that agents (or data owners) cannot provide covariates
without also providing their power measurements.

To the best of our knowledge, only three works have
proposed privacy-preserving approaches for RES forecasting.
Zhang and Wang described a privacy-preserving approach for
wind power forecasting with off-site time series, which com-
bined ridge linear quantile regression with alternating direction
method of multipliers (ADMM) [9]. However, privacy with
ADMM is not always guaranteed since it requires intermediate
calculations, allowing the most curious competitors to recover
the data at the end of several iterations [10]. Moreover, the
central node can also recover the original and private data.
Sommer et al. [11] considered an encryption layer, which
consists of multiplying the data by a random matrix. However,
the focus of this work was not data privacy, but rather online
learning, and the private data are revealed to the central
agent who performs intermediary computations. Berdugo et
al. described a method based on local and global analog-search
(i.e., template matching) that uses solar power time series from
neighboring sites [12]. However, agents only share reference
time-stamps and normalized weights of the analogs identified
by the neighbors, hence forecast error is only indirectly
reduced. In this paper, we also use ADMM as a central
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framework for distributed learning and forecasting, in view of
its flexibility in terms of communication setup for all agents
involved, the possibility to add a privacy-preserving layer, as
well as the promising resulting forecast skill documented in
the literature.

A literature analysis in [10] of privacy-preserving tech-
niques for VAR has grouped these techniques as (a) data
transformation, such as generation of random matrices that
pre- or post-multiply the data [13] or using principal compo-
nent analysis with differential privacy [14] (b) secure multi-
party computation, such as linear algebra protocols [15] or
homomorphic encryption (encrypting the original data in a
way that arithmetic operations in the public space does not
compromise the encryption [16]), and (c) decomposition-based
methods like the ADMM [17] or the distributed Newton-
Raphson method [18]. The main conclusions were that data
transformation requires a trade-off between privacy and accu-
racy, secure multi-party computations either result in computa-
tionally demanding techniques or do not fully preserve privacy
in VAR models, and that decomposition-based methods rely on
iterative processes and after a number of iterations, the agents
have enough information to recover private data.

With our focus on privacy-preserving protocols for very
short-term forecasting with the VAR model, the main research
outcome from this work is a novel combination of data
transformation and decomposition-based methods so that the
VAR model is fitted in another feature space without decreas-
ing the forecast skill (which contrasts with [12]). The main
advantage of this combination is that the ADMM algorithm is
not affected and therefore: (a) asynchronous communication
between peers can be addressed while fitting the model;
(b) a flexible privacy-preserving collaborative model can be
implemented using two different schemes, centralized commu-
nication with a neutral node and peer-to-peer communication,
and in a way that original data cannot be recovered by
central node or peers (this represents a more robust approach
compared to the ADMM implementation in [9], [11]).

The remaining of this paper is organized as follows: Sec-
tion II describes the distributed learning framework. Section III
describes the VAR model and coefficients’ estimators. Sec-
tion IV formulates a novel privacy-preserving LASSO-VAR
model. Then, a case study with solar energy data is considered
in Section V. The work concludes in Section VI.

II. DISTRIBUTED LEARNING FRAMEWORK

This section discusses the distributed learning framework
that enables different agents or data owners (e.g., RES power
plant, market players, forecasting service providers) to ex-
ploit geographically distributed time series data (power and/or
weather measurements, NWP, etc.) and improve forecast skill
while keeping data private. In this context, data privacy can
either refer to commercially sensitive data from grid-connected
RES power plants or personal data (e.g., under European
Union General Data Protection Regulation) from households
with RES technology. Distributed learning (or collaborative
forecasting) means that instead of sharing their data, the model
fitting problem is solved in a distributed manner. Two collab-
orative schemes are possible: centralized communication with

a central node (central hub) and peer-to-peer communication
(P2P).

In the central hub model, the scope of the calculations
performed by the agents is limited by their local data and the
only information transmitted to the central node is statistics,
e.g., average values or local data multiplied by locally esti-
mated coefficients. The central node is responsible for com-
bining these local estimators and, when considering iterative
solvers like ADMM, coordinating the individual optimization
processes to solve the main optimization problem. The central
node can be either a transmission/distribution system operator
(TSO/DSO) or a forecasting service provider. The TSO or
DSO could operate a platform that promotes collaboration
between competitive RES power plants in order to improve
the forecasting accuracy and reduce system balancing costs.
On the other hand, the forecasting service provider could
host the central node and make available APIs and protocols
for information (not data) exchange between different data
owners, during model fitting, and receives a payment for this
service.

In the P2P, the agents equally conduct a local computation
of their estimators, but share their information with peers,
meaning that each agent is itself agent and central node. While
P2P tends to be more robust (i.e., lower points of failure), it
is usually difficult to make it as efficient as the central hub
model in terms of communication costs — when considering
n agents, each agent communicates with the remaining n−1.

The P2P model is suitable for data owners that do not
want to rely (or trust) upon a neutral agent. Potential business
models could be: P2P forecasting between prosumers or RES
power plants [19]; smart cities characterized by an increasing
number of sensors and devices installed at houses, buildings,
and transportation network [20].

In order to make these collaborative schemes feasible, the
following fundamental principles must be respected: (a) ensure
improvement in forecast skill, compared to a scenario without
collaboration; (b) guarantee data privacy, i.e., agents and the
central node cannot have access to (or recover) original data;
(c) consider synchronous and asynchronous communication
between agents. The formulation that will be described in
Section IV fully guarantees these three core principles.

III. BACKGROUND: VECTOR AUTOREGRESSIVE MODEL

This section summarizes the VAR model, as well as the
most common model fitting algorithms. Throughout this paper,
matrices are represented by bold uppercase letters, vectors by
bold lowercase letters, and scalars by lowercase letters. Also,
a = [a1, a2]> represents a column vector, while the column-
wise operation between two vectors or matrices is denoted as
[a,b] or [A,B], respectively.

A. VAR Model Formulation

Let {yt}Tt=1 be an n-dimensional multivariate time series,
where n is the number of data owners. Then, {yt}Tt=1 follows
a VAR model with p lags, denoted by VARn(p), when

yt = η +

p∑
`=1

yt−`B
(`) + εt, (1)



POST-PRINT 3

for t = 1, . . . , T , where η = [η1, . . . , ηn] is the constant
intercept (row) vector, η ∈ Rn; B(`) represents the coefficient
matrix at lag ` = 1, ..., p, B(`) ∈ Rn×n, and the coefficient
associated with lag ` of time series i, to estimate time series
j, is at position (i, j) of B(`), for i, j = 1, ..., n; and
εt = [ε1,t, . . . , εn,t], εt ∈ Rn, denotes a white noise vector
that is independent and identically distributed with mean zero
and nonsingular covariance matrix. By simplification, yt is
assumed to follow a centered process, η = 0, i.e., as a vector
of zeros of appropriate dimension. A VARn(p) model can be
written in matrix form as

Y = ZB + E, (2)

where

Y=

 y1

. . .
yT

 ,B=

 B(1)

. . .
B(p)

 ,Z=

 z1

. . .
zT

 ,E=

 ε1

. . .
εT

 ,
are obtained by joining the vectors row-wise, and define,
respectively, the T ×n response matrix, the np×n coefficient
matrix, the T×np covariate matrix and the T×n error matrix,
with zt = [yt−1, . . . ,yt−p].

B. VAR Model Estimation

Usually, when the number of covariates, np, is substantially
smaller than the records, T , the VAR model is estimated
through the multivariate least squares,

B̂LS = argmin
B

(
‖Y − ZB‖22

)
, (3)

where ‖.‖r represents both vector and matrix Lr norms. How-
ever, as the number of data owners increases, as well as the
number of lags, it becomes indispensable to use regularization
techniques, such as LASSO, aiming to introduce sparsity into
the coefficient matrix estimated by the model. In the standard
LASSO-VAR approach, the coefficients are estimated by

B̂ = argmin
B

(
1

2
‖Y − ZB‖22 + λ‖B‖1

)
, (4)

where λ > 0 is a scalar penalty parameter.
The LASSO penalty is convenient to use when handling

high-dimensional data since the penalty function shrinks some
of the coefficients to zero, performing variable selection.
Instead of assuming that all lagged multivariate time series
are contributing to the model, this framework extracts, with
a small computational effort, the predictors with the strongest
contribution to forecast the target variable. As showed in [6],
[7], the introduction of sparsity in the model’s coefficients
can find sub-groups of spatio-temporal dependency between
RES power plants, enabling the application of the LASSO-
VAR model to a large spatial region. The outcome is an inter-
pretable model, in terms of spatial and temporal dependency,
which avoids noisy estimates and unstable forecasts. Some
alternatives to LASSO are the partial spectral coherence with
Bayesian information criterion [6] or a penalty term based
on the correlation among the time series rate-of-change [21],
among others.

Y = ZB+E

Split across features

VARn(p)

Y
A

1

. . .

Y
A

n

ZA1
. . . ZAn

BA1

. . .

BAn

E
A

1

. . .

E
A

n

= +




y1,t . . . yn,t

y1,t+1 . . . yn,t+1

y1,t+2 . . . yn,t+2

. . . . . . . . .
y1,t+h. . . yn,t+h




=




y1,t−1 . . . yn,t−1 . . . y1,t−p . . . yn,t−p

y1,t . . . yn,t . . . y1,t−p+1 . . . yn,t−p+1

y1,t+1 . . . yn,t+1 . . . y1,t−p+2 . . . yn,t−p+2

. . . . . . . . . . . . . . . . . . . . .
y1,t+h−1. . . yn,t+h−1. . . y1,t+h−p. . . yn,t+h−p







B
(1)
1,1 . . .B

(1)
1,n

. . . . . . . . .

B
(1)
n,1. . .B

(1)
n,n

. . . . . . . . .

B
(p)
1,1 . . .B

(p)
1,n

. . . . . . . . .

B
(p)
n,1. . .B

(p)
n,n




+ E

...

Fig. 1. Definition of VARn(p) model and data structure.

Despite the many benefits, the LASSO regularization term
makes the loss function in (4) non-differentiable, limiting the
variety of optimization techniques that can be employed. In
this domain, ADMM is a popular and computationally efficient
technique allowing parallel estimation for data divided by
records or features, which is an appealing property when
designing a privacy-preserving approach.

1) Distributed ADMM and LASSO-VAR: When defining
a VAR model, each time series is collected by a specific
data owner, meaning that data are divided by features, i.e.,
Y=[YA1 , . . . ,YAn ] and Z=[ZA1 , . . . ,ZAn ], where YAi ∈
RT×1 and ZAi

∈ RT×p denote the target and covariate
matrix for the i-th data owner, respectively. Furthermore,
B=[BT

A1
, . . . ,BT

An
]T, as illustrated in Fig. 1.

Consequently, the problem in (4) can be re-written as

argmin
B

(1

2
‖Y −

∑
i

ZAi
BAi
‖22 + λ

∑
i

‖BAi
‖1
)
. (5)

This decomposition of the loss function allows parallel compu-
tation of BAi

, being the ADMM solution provided by system
of equations (6) – see [7],

Bk+1
Ai

= argmin
BAi

(ρ
2
‖ZAi

Bk
Ai

+ H
k − ZB

k −Uk−

ZAiBAi‖22 + λ‖BAi‖1
)
,

(6a)

H
k+1

=
1

N + ρ

(
Y + ρZB

k+1
+ ρUk

)
, (6b)

Uk+1 = Uk + ZB
k+1 −H

k+1
, (6c)

where ZB
k+1

= 1
n

∑n
j=1 ZAjB

k+1
Aj

, and Bk+1
Ai

∈ Rp×n,

ZAi
∈ RT×p, Y,H

k
,U ∈ RT×n, i=1, ..., n. BAi

is estimated
through standard ADMM, as described in Appendix A.

2) Privacy issues: In the collaboration schemes of Sec-
tion II, each agent determines and transmits (6a) and then it
is up to the central agent or peers (depending on the adopted
structure) to compute the quantities in (6b) and (6c). Although
there is no direct exchange of private data, the computation
of (6b) and (6c) provides indirect information about these
data, meaning that confidentiality breaches can occur after a
number of iterations. The term “confidentiality breach” means
the reconstruction of the entire private dataset by another party.

To reduce the possibility of such confidentiality breaches,
recent work combined distributed ADMM with differential
privacy, which consists of adding random noise (with certain
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statistical properties) to the data itself or coefficients [22], [23].
However, these mechanisms can deteriorate the performance
of the model even under moderate privacy guarantees [10].

IV. PRIVACY-PRESERVING DISTRIBUTED LASSO-VAR

This section describes the novel privacy-preserving col-
laborative forecasting method, which combines multiplica-
tive randomization of the data (Section IV-A) with the dis-
tributed ADMM for the generalized LASSO-VAR model (Sec-
tion IV-B). Communication issues (Section IV-E) are also
addressed since they are common in distributed systems.

A. Data Transformation with Multiplicative Randomization

Multiplicative randomization of the data [24] consists of
multiplying the data matrix X ∈ RT×ns by full rank pertur-
bation matrices. If the perturbation matrix M ∈ RT×T pre-
multiplies X, i.e., MX, the records are randomized. On the
other hand, if perturbation matrix Q ∈ Rns×ns post-multiplies
X, i.e., XQ, then the features are randomized. The challenges
related to such transformations are two-fold: (i) M and Q are
algebraic encryption keys, and consequently should be fully
unknown by agents, (ii) data transformations need to preserve
the relationship between the original time series.

When X is divided by features, as is the case with matrices
Z and Y when defining VAR models, Q can be constructed
as a diagonal matrix – see (7), where matrices in diagonal,
QAi

∈ Rs×s, are privately defined by agent i = 1, . . . , n.
Then, agents post-multiply their data without sharing QAi

,
since

[
XA1 ,. . . ,XAn

]
︸ ︷︷ ︸

=X




QA1 0
. . .

0 QAn




︸ ︷︷ ︸
=Q

=
[
XA1QA1 ,. . . ,XAnQAn

]
.

(7)
Unfortunately, the same reasoning is not possible when

defining M, because all elements of column j of M multiplies
all elements of row j in X (containing data from every agent).
Therefore, the challenge is to define a random matrix M,
unknown but at the same time built by all agents.

We propose to define M as

M = MA1
MA2

. . .MAn
, (8)

where MAi
∈ RT×T is privately defined by agent i. This

means that

MX = [MA1 . . .MAnXA1︸ ︷︷ ︸
=MXA1

, . . . ,MA1 . . .MAnXAn︸ ︷︷ ︸
=MXAn

]. (9)

Some linear algebra-based protocols exist for secure ma-
tricial product, but they were designed for matrices with
independent observations and have proven to fail when applied
to such matrices as Z and Y(see [10] for a proof). The
calculation of MXAi

is described in Algorithm 1.
The privacy of this protocol depends on r, which is chosen

according to the number of unique values on XAi . The optimal
value for r is discussed in Proposition 1 of Appendix B.

Algorithm 1 Data Encryption.
Input from ith agent: XAi

∈ RT×s and MAi
∈ RT×T

Input from jth agent (j 6= i): MAj
∈ RT×T

Output: MXAi = MA1 . . .MAnXAi

1: Initialization: Agent i generates random invertible ma-
trices CAi

∈ RT×(r−s), DAi
∈ Rr×r, and shares

WAi
∈ RT×r with the n-th agent,

WAi
= [XAi

,CAi
]DAi

. (10)

2: Agent n receives WAi
,∀i.

3: Agent n shares MAn
WAi

with the (n− 1)-th agent.
4: for agent j = n− 1, . . . , 1 do
5: Agent j receives

(∏n
k=j+1 MAk

)
WAi

, and
6: if j > 1 then
7: shares MAj

(∏n
k=j+1 MAk

)
WAi with agent j − 1

8: else
9: shares MAj

(∏n
k=j+1 MAk

)
WAi

with agent i
10: end if
11: end for
12: Agent i receives MWAi from the 1-st agent and recovers

MXAi
,

[MXAi
,MCAi

] = MWAi
D−1
Ai
. (11)

B. Formulation of the Collaborative Forecasting Model

When applying the ADMM algorithm, the protocol pre-
sented in the previous section should be applied to transform
matrices Z and Y in such a way that: (i) the estimated
coefficients do not coincide with the originals, instead they
are a secret transformation of them, (ii) agents are unable to
recover the private data through the exchanged information,
and (iii) cross-correlations cannot be obtained, i.e., agents are
unable to recover Z>Z nor Y>Y.

To fulfill these requirements, both covariate and target
matrices are transformed through multiplicative noise. Both
M and Q must be invertible, which is ensured if MAi and
QAi are invertible for i = 1, . . . , n.

1) Formulation: Let ZQ be the covariate matrix obtained
through (7) and Y the target matrix. Covariate matrix ZQ
is divided by features, and the optimization problem which
allows recovering the solution of (5) is

argmin
Bpost

(1

2
‖Y−

∑
i

ZAi
QAi

Bpost
Ai
‖22+λ

∑
i

‖QAi
Bpost
Ai
‖1
)
.

(12)
After a litle algebra, the relation between the ADMM solution
for (5) and (12) is

Bpost
Ai

k+1
= QAi

Bk+1
Ai

, (13)

suggesting coefficients privacy since the original B is no
longer used. However, the limitations identified in a previous
work [10] for (5) are valid for (12). That is, a curious agent
can obtain both Y and ZQ, and because Y and Z share a
large proportion of values, Z can also be recovered.
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Taking covariate matrix MZQ and target MY, the ADMM
solution for the optimization problem

argmin
B′

(1

2
‖MY−

∑
i

MZAi
QAi

B′Ai
‖22+λ

∑
i

‖QAi
B′Ai
‖1
)
,

(14)
preserves the relation between the original time series if M is
orthogonal, i.e., MM>=I. In this case, a curious competitor
can only obtain MY without distinguishing between M and
Y. But the orthogonality of M ensures that (MY)>MY =
Y>Y, meaning that the covariance matrix is not protected.

Note that the orthogonality of M is necessary to ensure that,
while computing B′Ai

,

Q>Ai
Z>Ai

M>
[
MZAiQAiB

′k
Ai
−MZQB′

k
+ . . .

]
=

Q>Ai
Z>Ai

[
ZAi

QAi
B′

k
Ai
− ZQB′

k
+ . . .

]
.

(15)

We deal with this limitation by using Z>Ai
M−1 instead of

Z>Ai
M>. Our proposal requires agents to compute MZAi ,

MYAi
and Z>Ai

M−1. Algorithm 2 summarizes our proposal
for estimating a privacy-preserving LASSO-VAR model.

Z>Ai
M−1 is obtained by adapting the protocol in (10)–(11).

In this case, the value of r is more restrictive because we
need to ensure that agent i does not obtain both Y>Ai

M−1

and MYAi
. Otherwise, the covariance and cross-correlation

matrices are again vulnerable. Let us assume that ZAi
has

u unique unknown values and YAi has v unique unknown
values that are not in ZAi . Then, privacy is ensured by
computing MZAi

QAi
and Q>Ai

Z>Ai
M−1 using the smallest

natural number r such that
√
Tp− u<r<T/2 ∧ r > p,

and then MYAi with
√
T−v<r′<T−2r ∧ r′ > 1 (see

Proposition 2 in Appendix B for determination of the optimal
r). Appendix C presents an analysis of the data privacy for
scenarios without and with collusion between agents (data
owners) during encrypted data exchange.

Finally, it is important to underline that Algorithm 2 can be
applied to both central hub model and P2P model schemes
without any modification – depending on who (central node
or peers, respectively) receives MZAiQAiB

′k+1
Ai

and com-
putes (17)–(19).

2) Malicious agents: The proposed approach assumes that
agents should only trust themselves, requiring control mech-
anisms to detect when agents share wrong estimates of their
coefficients, compromising the global model. Since MY and
MZQB′

k can be known by agents without exposing private
data, a malicious agent is detected through the analysis of
the global error ‖MY−MZQB′

k‖22. That is, during the
iterative process, this global error should smoothly converge,
as depicted in Fig. 2 (left plot), and the same is expected for
the individual errors ‖MY−MZAi

QAi
B′

k
Ai
‖22,∀i.

In the example of Fig. 2, two agents are assumed to add
random noise to their coefficients. This results in the erratic
curve for the global error shown in Fig. 2. An analysis of
individual errors, in Fig. 2 (right plot), shows that all agents
have smooth curves, except the two who shared distorted
information.

Algorithm 2 Synchronous Privacy-preserving LASSO-VAR.
Input: Randomized data MZAiQAi , MYAi , Q

>
Ai
Z>Ai

M−1

Output: Transformed coefficients B′Ai
=QAiBAi , i=1, . . . , n

1: Initialization: B′0Ai
, H

0
, U0 = 0, λ, ρ ∈ R+, k = 0

2: for agent i = 1, . . . , n do
3: PAi =

(
(ZAiQAi)

>(ZAiQAi) + ρQ>Ai
QAi

)−1

4: end for
5: while stopping criteria not satisfied do
6: for agent i = 1, . . . , n do
7: Initialization: B̃0

Ai
, H̃

0

, Ũ0 = 0, j = 0
8: KAi

=MZAi
QAi

B′
k
Ai

+H
k−MZQB′

k−Uk (16)
9: while stopping criteria not satisfied do

10: B̃j+1
Ai

= PAi

(
Q>Ai

Z>Ai
M−1KAi

+ρ(H̃
j

−Ũj)
)

11: H̃
j+1

= Sλ/ρ2
(
QAi

B̃j+1
Ai

+ Ũj
)

# soft thresh. op.

12: Ũj+1 = Ũj + QAi
B̃j+1
Ai
− H̃

j+1

13: j = j + 1
14: end while
15: B′

k+1
Ai

= B̃j
Ai

16: end for
MZAi

QAi
B′

k
Ai

is shared with peers or central node,
who computes (17)–(19),

17: MZQB′
k

=
1

N

∑
i

MZAi
QAi

B′
k
Ai

(17)

18: H
k+1

=
1

N + ρ

(
MY + MZQB′

k
+ ρUk

)
(18)

19: Uk+1 = Uk + MZQB′
k+1 −H

k+1
(19)

20: k = k + 1
21: end while

20 40 60 80
iter(k)

||M
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−
M

Z
Q

B
k ||2

correct cooperation

two agents misbehave

20 40 60 80
iter(k)

||M
Y

−
M

Z
A

iQ
A

iB
A

ik ||2

Fig. 2. Error evolution (left: global error; right: error by agent with black lines
representing the two agents who add random noise to MZAi

QAi
B′kAi

).

C. Tuning of Hyper-parameters

Since the ADMM solutions for (4) and (14) are the same,
agents can tune hyper-parameters (ρ and λ) by applying com-
mon techniques, such as cross-validation grid-search, Nelder-
Mead optimization, Bayesian optimization, etc., to minimize
the loss function in (14). This requires the definition of
fitting and validation datasets and corresponding encryption
by Algorithm 1, taking into account that, for each fitting and
validation pair, the matrix QAi

needs to be the same, but all
the others should be changed to keep data private.
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TABLE I
FLOATING-POINT OPERATIONS IN ALGORITHM 1.

Encrypted information Operations

(MZAi
QAi

, Q>Ai
Z>Ai

M−1) O(2Tr2 + 2T 2nr + T (p2 + r2))

MYAi
O(Tr′2 + T 2nr′ + Tr′2)

r = the smallest natural number such that
√
Tp− u<r<T/2 ∧ r > p

r′ = the smallest natural number such that
√
T−v<r′<T−2r ∧ r′ > 1
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(b) ADMM (Algorithm 2) iteration.

Fig. 3. Mean running time as a function of the number of agents.

D. Computational Complexity

Typically, the computational complexity of an algorithm is
estimated by the number of required floating-point operations
(defined as one addition, subtraction, multiplication, or divi-
sion of two floating-point numbers). When compared to the
existing distributed ADMM literature applied to the LASSO-
VAR model (e.g., [7], [25]), the computational complexity
of the ADMM algorithm remains almost the same – only
p2n extra floating-point operations come from considering
QAi

B̃j+1
Ai

instead of B̃j+1
Ai

in line 11 and 12 of Algorithm 2.
However, there is also the computational cost related to the
data transformation, performed before running the ADMM
algorithm. Table I summarizes the floating-point operations
necessary to encrypt the data matrices ZAi and YAi . The
computational time for such data encryption is expected to
increase linearly with the number of agents, and quadrati-
cally with the number of records. A numerical analysis was
performed by simulating data from VAR models with n ∈
{10, 100, 200, . . . , 1600}, T ∈ {10000, 15000} and p = 5.

Fig. 3 summarizes the mean running times using an i7-
8750H @ 2.20GHz with 16 GB of RAM. To properly ana-
lyze the mean time per ADMM iteration, the computational
times for the cycle between lines 6 to 15 of Algorithm 2
(coefficients’ update) is measured assuming that the n agents
update it in parallel. That said, considering for example a case
with 10000 records and 500 agents, the data encryption takes
around 15 minutes, and then the Algorithm 2 takes around 10
seconds per iteration.

E. Asynchronous Communication

When applying the proposed method, the matrices (17)–
(19) combine the solutions of all data owners, meaning that
the “slowest” agent dictates the duration of each iteration.
Since communication delays and failures may occur due to
computation or communication issues, the proposed algorithm
should be robust to this scenario. Otherwise, the convergence
to the optimal solution may require too much time. The

proposed approach deals with these issues by considering the
last information sent by agents, but different strategies are
followed according to the adopted collaborative scheme.

Regarding the centralized scheme, let Ωki be the set of
iterations for which agent i communicated its information,
until current iteration k. After receiving the local contributions,
central agent computes H

k
and Uk, in (18)–(19), by using∑n

i=1 MZAi
QAi

B′
max(Ωk

i )
Ai

. Then, central agent returns H
k

and Uk, informing agents about max(Ωki ). To proceed, B′k+1
Ai

is updated by using MZAi
QAi

B′
max(Ωk

i )
Ai

in (16).
For the P2P approach, let Λki be the set of agents

sharing information computed at iteration k, with agent i,
i.e., Λki ={j : agent j sent MZAjQAjB

′k
Aj

to agent i}. After
computing and sharing MZAi

QAi
B′

k
Ai

, a second round of
peer-to-peer communication is proposed, where agents share
both Λki and

∑
j∈Λk

i
MZAj

QAj
B′

k
Aj

. After this extra commu-
nication round, agent i can obtain missing information when
Λki 6= Λkj , ∀i, j.

V. CASE-STUDY

A. Data Description and Experimental Setup

The proposed algorithm is applied to forecast solar power
up to 6 hours ahead. The data is publicly available in [10]
and consists of hourly time series of solar power from 44
micro-generation units, located in a Portuguese city, and covers
the period from February 1, 2011 to March 6, 2013. Since
the VAR model requires the data to be stationary, the solar
power is normalized through a clear sky model, which gives an
estimate of the solar power in clear sky conditions at any given
time [26]. This clear-sky model is fully data-driven and does
not require any site-specific information (coordinates, rated
power, etc.) since it estimates the clear-sky power time series
exclusively from historical on-site power observations. Also,
night-time hours are excluded by removing data for which
the solar zenith angle is larger than 90. Based on previous
work [3], a LASSO-VAR model to forecast yi,t+h at time t
(using lags t − 1, t − 2 and t + h − 23) is evaluated with a
sliding-window of one month and the model’s fitting period
consists of 12 months, h ≤ 6.

It is important to note that the LASSO-VAR model can
be applied to both solar and wind power time series without
any modification (see [7] for wind power forecasting). Never-
theless, a different set of lags should be selected for wind
power. Furthermore, when compared to wind power, solar
power forecasting is more challenging because the lags 1 and
2 are zero for the first daylight hours, i.e., there are fewer
unknown data, and this makes it easier to recover original
data. In our protocol, this means more restrictive values for u
and v, which are crucial when defining r and r′, as stated in
Proposition 2.

To simulate the proposal, communication failures are mod-
eled through Bernoulli random variables Fit, with failure
probability pi, Fit∼Bern(pi), for each agent i=1, . . . , n at
each communication time t.
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The performance of the models is accessed through the
normalized root mean squared error (NRMSE) calculated for
agent i and lead-time h, with h=1, . . . , 6, as

NRMSEi,h =

√
1
k

∑T
t=1(ŷi,t+h − yi,t+h)2

(
∑T
t=1 yi,t+h)/T

, (20)

where ŷi,t+h represents the forecast generated at time t.
The ADMM process stops when all agents achieve

‖Bk+1
Ai
−Bk

Ai
‖2/max(1,min(‖Bk+1

Ai
‖1, ‖Bk

Ai
‖1))≤ε, where

ε is the tolerance parameter.

B. Benchmark Models

The persistence and LASSO-autoregressive (LASSO-AR)
models are implemented to assess the impact of collaboration
over a model without collaboration. Two persistence models
are considered: ŷi,t+h = ŷi,t (last measured power) and
ŷi,t+h = ŷi,t+h−23 (power measured 24 hours before).

The analog method described in [12] was also implemented
as a benchmark model because: (a) it is the only work in
the RES forecasting literature that implements collaborative
forecasting without data disclosure; (b) when the forecasting
algorithm was designed, a trade-off between accuracy and pri-
vacy was necessary and the choice was privacy over accuracy.

Firstly, agent i searches the k situations most similar to the
current power production values yi,t−`+1, . . . ,yi,t. This sim-
ilarity is measured through the Euclidean distance. Secondly,
the k most similar situations (called analogs) are weighted
according to the corresponding Euclidean distance. Agent i
attributes the weight wAi

(a) to the analog a. The forecast for
h steps ahead is obtained by applying the computed weights
on the h values registered immediately after the k analogs.
The collaboration between agents requires the exchange of
the time indexes for the selected analogs and corresponding
weights. Two analogs belong to the same global situation if
they occur at the same or at close timestamps. Agent i scores
the analog a, observed at timestamps ta, by performing

sAi(a)= (1−α)wAi(a)︸ ︷︷ ︸
own contribution

+
α

n

n∑
i=1

k∑
j=1

wAj
(j)Iε(ta, tj),︸ ︷︷ ︸

others’ weights for close timestamps

(21)

where α is the weight given to neighbor information, j are
the analogs from other agents, registered at timestamps tj , and
Iε(ta, tj) is the indicator function taking value 1 if |tj−ta| ≤
ε, with ε being the maximum time difference for two analogs
to be considered part of the same global situation.

The results in the next section will show that our approach
does not degrade accuracy (the same results of a LASSO-
VAR without privacy constraints are obtained), while offering
robustness to data privacy.

C. Numerical Results

To access the quality of the proposed collaborative forecast-
ing model, the synchronous LASSO-VAR is compared with
benchmark models. Both central hub and P2P model have the
same accuracy when considering synchronous communication.

The hyper-parameters ρ and λ were determined by cross-
validation (12 folds) in the initial model’s fitting dataset, by
considering the values of ρ, λ ∈ {0.5, 1, 2, 3, 4, 5, 10, 15, 20,
25}. Figure 4 illustrates the results in terms of NRMSE, for
h = 1.

Table II presents the NRMSE error for all agents, distin-
guishing between lead-times. In general, the smaller the fore-
casting horizon, the larger is the NRMSE improvement, i.e.,
(NRMSEBench. −NRMSEV AR)/NRMSEBench. ·100%.
Besides, since the proposed LASSO-VAR and the LASSO-AR
models have similar NRMSE for h > 3, the Diebold-Mariano
test [27] is applied to test the superiority of the proposal,
assuming a confidence level of 5%. This test showed that
the improvement is statistically significant for all horizons.
It is important to note that the decrease in the improvement is
explained by the cross-correlation between the geographically
distributed time series data. Since the dataset is from a
small municipality in Portugal, it is expected that the highest
improvement occurs for the first lead times (in particular
the first one), where the cross-dependencies between time
series have the most effect. However, this depends on the
geographical layout and distance between power plants. For
instance, in [7], the results for wind power plants show the
highest improvement for the second lead time; in the test
case of western Denmark [28], the highest cross-dependency
between two groups of wind farms was observed for lag two.

Fig. 5 depicts the relative improvement in terms of NRMSE
for the 44 agents. According to the Diebold-Mariano test, the
LASSO-VAR model outperforms benchmarks in all lead-times
for at least 25 of the 44 agents. Indeed, some agents contribute
to improving the competitors’ forecast without having a benefit
to their own forecasting accuracy. Then, even if privacy is
ensured, such agents can be unwilling to collaborate, which
motivates data monetization through data markets [29].

For asynchronous communication, equal failure probabili-
ties pi are assumed for all agents. Since a specific pi can
generate various distinct failure sequences, 20 simulations
were performed for each pi, pi ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Table III shows the mean NRMSE improvement for different
failure probabilities pi, i = 1, . . . , n. In general, the greater the
pi the smaller the improvement. Despite the model’s accuracy
decreases slightly, the LASSO-VAR model continues to out-
perform the AR model for both collaborative schemes, which
demonstrates high robustness to communication failures.

Fig. 6 depicts the evolution of the loss while fitting the
LASSO-VAR model, considering pi ∈ {0.5, 0.9}. For the
centralized approach, the loss tends to stabilize around larger
values. In general, the results are better for the P2P scheme
since in the centralized approach if an agent fails the algorithm
proceeds with no chance of obtaining its information. In P2P,
this agent may have communicated his contribution to some
peers and the probability of losing information is smaller.

Finally, Table IV presents the mean running times and the
number of iterations of both non-distributed and distributed ap-
proaches. The proposed schemes require larger execution times
since they require estimating B′

k
Ai

through a second ADMM
cycle (Algorithm 2). However, the non-distributed LASSO-
VAR requires more iterations to converge (ε=5×10−4).
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TABLE II
NRMSE FOR SYNCHRONOUS MODELS.

h=1 h=2 h=3 h=4 h=5 h=6
Persistence (t)∗ 0.4054 0.7049 0.9511 1.1385 1.2671 1.3445

Persistence (t+ h-23)∗ 0.4362 0.4362 0.4362 0.4362 0.4362 0.4362
Analogs [12]† 0.2659 0.3319 0.3753 0.4011 0.4139 0.4191
LASSO-AR∗ 0.2580 0.3359 0.3641 0.3757 0.3798 0.3815

LASSO-VAR† 0.2363X 0.3155X 0.3533X 0.3699X 0.3745X 0.3780X
∗ non-collaborative † collaborative X statistically significant improvement

TABLE III
MEAN RELATIVE NRMSE IMPROVEMENT [%] OVER THE LASSO-AR

MODEL.

h=1 h=2 h=3 h=4 h=5 h=6
pi central P2P central P2P central P2P central P2P central P2P central P2P
0 8.41 6.05 2.95 1.52 1.39 0.93
0.1 7.93 8.41 5.98 6.05 2.91 2.95 1.49 1.52 1.35 1.39 0.89 0.93
0.3 7.45 ” 5.89 ” 2.89 ” 1.40 ” 1.18 ” 0.69 ”
0.5 6.69 ” 5.77 ” 2.88 ” 1.30 ” 1.00 ” 0.52 ”
0.7 5.71 ” 5.54 ” 2.84 ” 1.24 ” 0.89 ” 0.33 ”
0.9 3.75 8.10 5.19 5.75 2.74 2.78 0.75 1.47 0.62 1.38 -0.82 0.88

TABLE IV
MEAN RUNNING TIMES (IN SEC) PER ITERATION AND NUMBER OF

ITERATIONS UNTIL CONVERGENCE.

Non distributed Central LASSO-VAR P2P LASSO-VAR
LASSO-VAR Enc. data ADMM Enc. data ADMM
0.035 (≈ 410) 65.46 0.052 (≈ 300) 65.46 0.1181 (≈ 300)
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VI. CONCLUSION

RES forecast skill can be improved by combining data
from multiple geographical locations. One of the simplest and
most effective collaborative models for very short-term fore-
casts is the vector autoregressive model. However, different
data owners might be unwilling to share their time series
data. In order to ensure data privacy, this work combined
the advantages of the ADMM decomposition method with
data encryption through linear transformations of data. It is
important to underlines that the coefficients matrix obtained
with the privacy-preserving protocol is the same one obtained
without any privacy protection.

This novel method also included an asynchronous dis-
tributed ADMM algorithm, making it possible to update the
forecast model based on information from a subset of agents
and improve the computational efficiency of the proposed
model. The mathematical formulation is flexible enough to
be applied in two different collaboration schemes (central
hub model and P2P) and paved the way for learning models
distributed by features, instead of observations.

The results obtained for a solar energy dataset show that
the privacy-preserving LASSO-VAR model delivers a forecast
skill comparable to a model without privacy protection and
outperformed a state-of-the-art method based on analog search.
Furthermore, it exhibited high robustness to communication
failures, in particular for the P2P scheme.

Two aspects not addressed in this paper were uncertainty
forecasting and application to non-linear models (and conse-
quently longer lead times), which we plan to investigate in
a forthcoming work. Nevertheless, uncertainty forecast can
be readily generated by transforming original data using a
logit-normal distribution [6]. The proposed privacy-preserving
protocol can be applied to non-linear regression by extending
the additive model structure to a multivariate setting [30] or
by local linear smoothing [31]. However, the extension to
other non-linear multivariate models, such as long short-term
memory networks and variants, requires further researcher and
significant changes in the protocol. For instance, the rectifier
(ReLU), which is an activation function commonly applied in
neural networks and defined as f(x) = max(0, x), has the
problem that f(MZQB) 6= Mf(ZQB).

APPENDIX A
STANDARD ADMM AND LASSO-VAR

The ADMM solution for (4) is obtained by splitting the
B variable into two variables (B and H) and adding the
constraint H = B,

argmin
B

(1

2
‖Y − ZB‖22 + λ‖H‖1

)
subject to H = B. (22)

Then, based on the augmented Lagrangian of (22), the solution
is provided by the following system of equations – see [7],

Bk+1 = (Z>Z + ρI)−1(Z>Y + ρ(H
k −Uk)) (23a)

Hk+1 = Sλ/ρ(B
k+1 + Uk) (23b)

Uk+1 = Uk + Bk+1 −Hk+1, (23c)
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where U is the scaled dual variable associated with the con-
straint H = B, I is the identity matrix with proper dimension,
and Sλ/ρ is the soft thresholding operator. Consequently, (6a)
can be estimated by adapting (22),

argmin
B

(1

2
‖Ŷ−ZAiBAi‖22+λ̂‖HAi

‖1
)

s.t. HAi
=BAi

,

(24)
where ŶAi

= ZAi
Bk
Ai

+ H
k − ZB

k −Uk and λ̂ = λ/ρ.

APPENDIX B
OPTIMAL VALUE OF r

Proposition 1. Let XAi
∈ RT×s be the sensible data from

agent i, with u unique values, and MAj
∈ RT×T be the private

encryption matrix from agent j. If agents compute MAjXAi

applying the protocol in (10)–(11), then two invertible matrices
DAi

∈ Rr×r and CAi
∈ RT×(r−s) are generated by agent i

and data privacy is ensured for
√
Ts− u < r < T. (25)

Proof. Since agent i only receives MAj [XAiCAi ]DAi ∈
RT×r, the matrix MAj ∈ RT×T is protected if r < T .
Furthermore, agent j receives [XAi

CAi
]DAi

∈ RT×r and
does not know XAi

∈ RT×s,CAi
∈ RT×r−s and DAi

∈
Rr×r. Although XAi

∈ RT×s, we assume this matrix has
u unique values whose positions are known by all agents –
when defining a VAR model with p consecutive lags ZAi has
T+p−1 unique values, see Fig. 1 – meaning there are fewer
values to recover.

Given that, agent j receives Tr values and wants to de-
termine u + T (r − s) + r2. The solution of the inequality
Tr < u+T (r−s)+ r2, in r, determines that data from agent
i is protected when r >

√
Ts− u.

�
Proposition 2. Let XAi

∈ RT×s and GAi
∈ RT×g be

private data matrices, such that XAi
has u unique values to

recover and GAi
has v unique values that are not in XAi

. As-
sume the protocol in (10)–(11) is applied to compute MXAi ,
X>Ai

M−1 and MGAi , with M as defined in (8). Then, to
ensure privacy while computing MXAi

and X>Ai
M−1, the

protocol requires
√
Ts− u < r < T/2 ∧ r > s. (26)

In addition, to compute MGAi , the protocol should take√
Tg − v < r′ < T − 2r ∧ r′ > g. (27)

Proof. (i) To compute MXAi , the i-th agent shares
WAi = [XAi ,CAi ]DAi ∈ RT×r with the n-th agent,
CAi

∈ RT×(r−s), DAi
∈ Rr×r, r > s. Then, the process

repeat until the 1-st agent receives MA2
. . .MAn

WAi
and

computes MWAi
= MA1

MA2
. . .MAn

WAi
. Consequently,

agent j = 1, . . . , n receives Tr values during the protocol.
(ii) X>Ai

M−1 is computed using the matrix WAi
defined

before. Since M−1 = M−1
An

. . .M−1
A1

, the n-th agent computes
W>

Ai
M−1

An
. Then, the process repeat until the 1-st agent

receives W>
Ai
M−1

An
. . .M−1

A2
and computes W>

Ai
M−1 =

W>
Ai
M−1

An
. . .M−1

A2
M−1

A1
. Again, the j-th agent receives Tr

values related to the unknown data from the i-th agent.

In summary, the n-th agent receives Tr values and un-
knowns u+T (r−s)+r2 (from XAi , C, D). The solution for
Tr<u+T (r− s) + r2 allows to infer that XAi is protected if

r >
√
Ts− u.

On the other hand, the i-th agent receives 2Tr values
(MWAi

, W>
Ai
M−1) and unknowns T 2 from M⇒ r<T/2.

(iii) Finally, to compute MGAi
, the i-th agent should

define new matrices C′Ai
∈ RT×(r′−g) and D′Ai

∈ Rr′×r′

sharing W′
Ai

= [GAi
,C′Ai

]D′Ai
∈ RT×r′ , r′ > g. The

computation of MW′ provides Tr′ new values, meaning
that after computing MXAi

, X>Ai
M−1 and MGAi

, the n-
th agent has Tr + Tr′ values and does not know u + T (r −
s) + r2 + v + T (r′ − g) + r′2 (from XAi , CAi , DAi , GAi ,
C′Ai

and D′Ai
respectively). The solution of the inequality

Tr + Tr′ < u+ T (r − s) + r2 + v + T (r′ − g) + r′2 allows
to infer that r′ >

√
Ts− u− r2 − v + Tg >

√
Tg − v.

On the other hand, the i-th agent receives 2Tr + Tr′ and
does not know T 2, meaning that r′ < T − 2r. �

APPENDIX C
PRIVACY ANALYSIS

The proposed approach requires agents to encrypt their
data and then exchange that encrypted data. This appendix
section analyzes the global exchange of information. First,
we show that the proposed privacy protocol is secure in a
scenario without collusion, i.e., no alliances between agents
(data owners) to determine the private data. Then, we analyze
how many agents have to collude for a privacy breach to occur.

A. No collusion between agents

While encrypting sensible data XAi
∈RT×s

and GAi
∈RT×g such that XAi

has u unique
values to recover and GAi

has v unique values
that are not in XAi , the 1-st agent obtains
M[XAi

,CAi
]DAi

∈RT×r, [[XAi
,CAi

]DAi
]
>
M−1∈RT×r

and M[GAi
,C′Ai

]D′Ai
∈RT×r′ , ∀i, which provides

2nTr + nTr′ values. At this stage, the agent does not know
T 2︸︷︷︸
M

+ (n− 1)u︸ ︷︷ ︸
XAi

,∀i 6=1

+ (n− 1)v︸ ︷︷ ︸
GAi

,∀i 6=1

+ (n− 1)T (r − s)︸ ︷︷ ︸
CAi

,∀i 6=1

+ (n− 1)r2︸ ︷︷ ︸
DAi

,∀i 6=1

+

(n− 1)T (r′ − g)︸ ︷︷ ︸
C′

Ai
,∀i 6=1

+ (n− 1)r′
2︸ ︷︷ ︸

D′
Ai
,∀i 6=1

values. Then, while fitting the

LASSO-VAR model, the 1-st agent can recover MX ∈ RT×ns
and MG ∈ RT×ng , as shown in [10]. That said, the 1-
st agent receives 2nTr + nTr′ + nTs + nTg, and a
confidentiality breach occurs if T (2nr + nr′ + ns + ng) ≥
T 2 + (n− 1)[u+ v + T (r − s) + r2 + T (r′ − g) + r′

2
].

After a little algebra, it is possible to verify that taking (26)
and (27), the previous inequality has no solution in R+

0 .

B. Collusion between agents

A set of agents C can come together to recover the data of
the remaining competitors. This collusion assumes that such
agents are willing to share their private data. Let c be the
number of agents colluding. In this scenario, the objective
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is to determine M ∈ RT×T , knowing MWAi
∈ RT×r,

W>
Ai
M−1 ∈ Rr×T , MW′

Ai ∈ RT×r′ , MXAi ∈ RT×s, and
MGAi ∈ RT×g , i ∈ C.

Mathematically, it means that colluders can recover T 2

values by solving cT (r + r + r′ + s + g) equations, which
is only possible for c ≥ d T

2r+r′+s+g e.
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