Journal article Open Access

Self-assembly of porphyrin nanostructures at the interface between two immiscible liquids

Molina-Osorio, Andrés F.; Cheung, David; O'Dwyer, Colm; Stewart, Andrew A.; Dossot, Manuel; Herzog, Grégoire; Scanlon, Micheál D.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">soft interface</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">self-assembly</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">porphyrin nanostructures</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">molecular antennas</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">interface between two immiscible liquids</subfield>
  </datafield>
  <controlfield tag="005">20210308002720.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This publication has emanated from research by M.D.S. and A.F.M.-O. supported by the European Research Council through a Starting Grant (agreement no. 716792) and in part by a research grant from Science Foundation Ireland (SFI) (grant number 13/SIRG/2137). M.D.S. and A.F.M.–O. acknowledge funding through Irish Research Council New Foundations Awards (2014 and 2015) to facilitate the research. A.M.O., M.D.S., G.H. and M.D. are grateful to the support of the Irish Research Council and Campus France for travel support between the French and Irish groups through their joint ULYSSES programme. G. H. is grateful to the French Programme Investissement d'Avenir (PIA) "Lorraine Université d'Excellence" (Reference No. ANR-15-IDEX-04-LUE) for the partial financial support of this work. C.O.D. acknowledges support from Science Foundation Ireland (SFI) under Grant Numbers 13/TIDA/E2761, 14/IA/2581 and 15/TIDA/2893. Computational facilities and support for the molecular dynamics simulations were provided by the Irish Centre for High-End Computing (ICHEC). Ivan Robayo-Molina (University of Limerick) is acknowledged for assistance in carrying out the potentiometric titrations.</subfield>
  </datafield>
  <controlfield tag="001">4587978</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland</subfield>
    <subfield code="0">(orcid)0000-0002-3994-2295</subfield>
    <subfield code="a">Cheung, David</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of Chemistry, and Tyndall National Institute, University College Cork, Cork, T12 YN60 Ireland</subfield>
    <subfield code="0">(orcid)0000-0001-7429-015X</subfield>
    <subfield code="a">O'Dwyer, Colm</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">The Bernal Institute and Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland</subfield>
    <subfield code="a">Stewart, Andrew A.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CNRS-Université de Lorraine, LCPME UMR 7564, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France</subfield>
    <subfield code="0">(orcid)0000-0003-0575-025X</subfield>
    <subfield code="a">Dossot, Manuel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CNRS-Université de Lorraine, LCPME UMR 7564, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France</subfield>
    <subfield code="0">(orcid)0000-0003-1932-9300</subfield>
    <subfield code="a">Herzog, Grégoire</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland</subfield>
    <subfield code="0">(orcid)0000-0001-7951-7085</subfield>
    <subfield code="a">Scanlon, Micheál D.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1134048</subfield>
    <subfield code="z">md5:84b0f1c6ec261929587f4c7e82b6e255</subfield>
    <subfield code="u">https://zenodo.org/record/4587978/files/2020_J_Phys_Chem_C_Manuscript_Open_Access.pdf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2799971</subfield>
    <subfield code="z">md5:70ec3c257a7af694aac1115e2baff36d</subfield>
    <subfield code="u">https://zenodo.org/record/4587978/files/2020_J_Phys_Chem_C_SI_Open_Access.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-03-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4587978</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">6929–6937</subfield>
    <subfield code="n">12</subfield>
    <subfield code="p">Journal of Physical Chemistry C</subfield>
    <subfield code="v">124</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland</subfield>
    <subfield code="0">(orcid)0000-0001-8356-6381</subfield>
    <subfield code="a">Molina-Osorio, Andrés F.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Self-assembly of porphyrin nanostructures at the interface between two immiscible liquids</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">13/SIRG/2137</subfield>
    <subfield code="a">Designing Reactive Functionalised Soft Interfaces _ Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen production</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">14/IA/2581</subfield>
    <subfield code="a">Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">13/TIDA/E2761</subfield>
    <subfield code="a">LiONSKIN - Moldable Li-ion battery outer skin for electronic devices</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">15/TIDA/2893</subfield>
    <subfield code="a">Advanced Battery Materials for High Volumetric Energy Density Li-ion Batteries for Remote Off-Grid Power</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">716792</subfield>
    <subfield code="a">Solar Energy Conversion without Solid State Architectures: Pushing the Boundaries of Photoconversion Efficiencies at Self-healing Photosensitiser Functionalised Soft Interfaces</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;One of the many evolved functions of photosynthetic organisms is to synthesize light harvesting nanostructures from photoactive molecules such as porphyrins. Engineering synthetic analogues with optimized molecular order necessary for the efficient capture and harvest of light energy remains challenging. Here, we address this challenge by reporting the self-assembly of zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrins into films of highly ordered nanostructures. The self-assembly process takes place selectively at the interface between two immiscible liquids (water|organic solvent), with kinetically stable interfacial nanostructures formed only at pH values close to the p&lt;em&gt;K&lt;/em&gt;a of the carboxyphenyl groups. Molecular dynamics simulations suggest that the assembly process is driven by an interplay between the hydrophobicity gradient at the interface and hydrogen bonding in the formed nanostructure. &lt;em&gt;Ex situ&lt;/em&gt; XRD analysis and &lt;em&gt;in situ&lt;/em&gt; UV/vis and steady state fluorescence indicates the formation of chlathrate type nanostructures that retain the emission properties of their monomeric constituents. The self-assembly method presented here avoids the use of acidic conditions, additives such as surfactants and external stimuli, offering an alternative for the realization of light-harvesting antennas in artificial photosynthesis technologies.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1021/acs.jpcc.0c00437</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
31
38
views
downloads
Views 31
Downloads 38
Data volume 48.1 MB
Unique views 28
Unique downloads 36

Share

Cite as