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Abstract
We study the matching problem in the incremental setting, where we are given
a sequence of edge insertions and aim at maintaining a near-maximum cardinality
matching of the graph with small update time. We present a deterministic algorithm
that, for any constant ε > 0, maintains a (1+ε)-approximate matching with constant
amortized update time per insertion.

1 Introduction

Let G = (V,E) be an n-node m-edge undirected graph. Finding a large cardinality
matching in G is a fundamental optimization problem. For bipartite graphs, the cur-
rently best available time bounds are O(m

√
n) due to Hopcroft and Karp [21], O(nω)

due to Mucha and Sankowski [29] and Õ(m10/7) due to Madry [27]. The former two
algorithms have been extend to finding matchings in general (non-bipartite) graphs as
well [28, 29].

In contrast to this static case (where the graph is given up-front), there has been
recently a lot of interest in the dynamic matching problem. In dynamic setting we must
maintain a (near-)optimal matching as the graph changes over time. Most of the results
have been given in the fully-dynamic model where edges are added or deleted over time.
It is known how to maintain the size of the maximum matching with O(n1.495) worst-
case update time [33]. And we known that maintaining the exact value of the maximum
matching requires polynomial update time under reasonable complexity conjectures [2,
20, 26]. Hence, we turn our attention to approximate matchings. In this case we know
how to maintain 2-approximate matchings with constant amortized update time [34], but
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algorithms achieving better-than-2 approximations all require polynomial update time.
In particular, we can maintain a (1 + ε)-approximate matching in the fully-dynamic
setting with update time O(

√
m/ε2) [18], a (3/2+ε)-approximate matching with update

time O(m1/4/ε2.5) [8], and for every sufficiently large integer K, an αK-approximation
to the matching size with update time O(n2/K) where αK ∈ (1, 2). (We survey the
existing results in detail in Section 1.2.) This suggests the question: can we achieve
better approximation in some natural dynamic settings?

In this paper, we consider the incremental model for dynamic algorithms, where the
edges of the graph can only be inserted but not deleted. We show that in this case we
can give much stronger results than in the fully-dynamic model:

Theorem 1.1. Given a sequence of edge insertions to a graph G and a constant ε > 0,
there exists a deterministic algorithm that maintains a (1 + ε)-approximate matching
with Oε(1) amortized update time per insertion.

We remark that by [26], maintaining a maximum matching requires polynomial amor-
tized update time even in the incremental case assuming the 3-SUM conjecture. Hence,
our result is asymptotically optimal, up to deamortization.

The only previous result for approximate matchings in the incremental model is due
to Gupta [16], who gave an amortized O(log2 n) update-time algorithm to maintain
(1 + ε)-approximate matchings in bipartite graphs. Hence, we improve the update time
from polylogarithmic to constant. Moreover, we also extend the result from bipartite
graphs to general graphs.

1.1 Our Techniques

As usual for approximate matching, our starting point is the well-known fact that a
given matching M is a 1 + 1

` approximation of the maximum matching OPT if there are
no length 2`+ 1 (or shorter) augmenting paths with respect to M . Hence it is sufficient
to search for a matching OPT` with the above property for ` = 1/ε.

One simple way to obtain OPT` is to use the following variant of Edmonds [14]
algorithm. Imagine each undirected edge {a, b} as two oppositely directed edges ab
and ba. Now our goal is to find a short directed augmenting path, i.e., a path P =
(a0, . . . , a2q+1), q ≤ `, where each edge {ai, ai+1} belongs to the matching iff i is odd. If
we find one such P , we replace the current matching M by M ⊕ P 1, and iterate.

One simple way to search for P is roughly as follows. For each free node v, we build
an alternating path tree Tv recursively in the following way. Let a be a given node,
starting with a = v. We first search for a free neighbor b of a such that the v-a path in
Tv plus ab induces an augmenting path. Otherwise, we expand the subtree of Tv rooted
at a by adding paths of type abc, with ab unmatched and bc matched, and continue
recursively on each such node c (unless c is at level2 2` already). In particular, if we
do not find any augmenting path, Tv at the end will have at most 2` levels, where even
(resp., odd) levels contain matched (resp., unmatched) edges only. Observe also that all

1With a slight notational abuse, we use P to denote both a directed path and its undirected variant.
2The level `T (v) of node v ∈ T is v’s hop-distance from the root of T , and the level `T (ab) of a

directed edge ab ∈ T is the level `T (b) of its highest level endpoint.



nodes in Tv but the root are matched, and all nodes at odd levels have precisely one
child. The above procedure has the advantage that it avoids blossom contractions3. In
particular, it works for general graphs. Unfortunately it is also very slow – its running
time is Ω(n`).

Our high-level approach is to maintain a partial version of the above alternating
path trees Tv, that can be updated very efficiently under insertion of edges. While our
approach does not allow us to discover all the augmenting paths of length up to 2`+1, we
are able to guarantee that any node-disjoint set of missed augmenting paths of that type
has relatively small cardinality w.r.t. the size of the current matching. Hence missing
those augmenting paths has a negligible impact on the approximation factor.

Let us describe our approach in more detail, starting with the simpler bipartite case.
We exploit two main ideas. The first critical idea is to limit the degree of nodes in each
Tv to some large enough constant ∆ depending on `. In particular, for a given node a
in the above recursive construction, in the case that we do not find an augmenting path
containing a, we only add up to ∆ paths of type abc. Note that now Tv contains at
most O(∆`) = Oε(1) nodes. Furthermore, with some extra work we guarantee that each
directed matched edge ab appears in at most one tree Tv at level i, for each possible even
value of i. To see why this is helpful, imagine that we miss some augmenting path P
because one of its nodes a appears at level i in some tree Tv where a has already degree
∆. Note that in this case we might miss discovering P . However, path P can increase
the matching at most by 1. We charge a fraction 1/∆ of this loss to each one of the ∆
matching edges that appear at level i + 2 in the subtree rooted at a. Each matching
edge can be charged by at most 2` node-disjoint paths this way (using the fact that each
edge appears in at most two directions and ` trees per direction), hence the total charge
is at most 2`

∆ : this is O(ε) for large enough ∆.
A more subtle problem arises when we do find an augmenting path P . In that case we

destroy the trees Tv that intersect P and rebuild them. This operation costs Ω(deg(a))
per reinserted node a, hence we cannot do that too frequently. Here we exploit our
second main idea. We introduce counters Ci[a] that are incremented each time a node a
is removed from some tree Tv where it appears at level i. We stop inserting a at level i in
trees when Ci[a] reaches a large enough constant C depending on `. This way reinsertions
have constant amortized cost. Using a global counting argument, we can show that, for
C large enough, the total loss due to (node-disjoint) augmenting paths which are not
discovered because one of their nodes reached the counter threshold is O(ε) times the
size of the current matching. The intuition is as follows. Each previously discovered
augmenting path P implies an increase of the matching size by one. We interpret this
increase as 1 credit, that we uniformly distribute among all the nodes of all the trees
that we need to rebuild because of P . Note that there are constantly many such trees
(since the length of P is bounded and nodes are duplicated a constant number of times)
and each such tree contains constantly many nodes (due to the degree and depth bound
of each Tv). Hence each affected node receives a constant fraction of 1 credit. When the
fractional credits accumulated at v reach a total of Ω(1/ε), these credits can be used to

3In some sense, each encountered blossom is traversed in both directions.



compensate the loss due to any future augmenting path involving v.
In the case of general graphs the requirement that each directed matching edge

appears in at most one copy per level i is too restrictive: indeed, it might happen that
we fail to discover an augmenting path not due to the degree or counter constraints,
but because of the presence of a blossom. To better understand this issue, consider the
following scenario. Consider an augmenting path u′αβu′′, and assume that edge {u′′, α}
exists. With the algorithm for the bipartite case we might have αβ appearing at level 2
in Tu′′ . This would prevent us from adding αβ at level 2 in Tu′ , and at the same time
the path in Tu′′ from u′′ to β cannot be extended to an augmenting path by adding edge
βu′′. This specific issue can be addressed by allowing αβ to appear at level 2 in two
different trees (with distinct roots), but this is not sufficient in general.

In order to address the above problem, we introduce a notion of simple path covering
that, to the best of our knowledge, is new and might be of independent interest. For
two paths P and P ′ (represented as a sequence of nodes) starting and ending at some
node s, resp., let P ◦ P ′ denote their concatenation. We show that any set U of simple
paths of length κ ending at some node s, contains a subset C of size at most (κ + 1)κ

′

such that the following covering property holds: given any path P ′ of length κ′ starting
at s and a path P ∈ U such that P ◦ P ′ is simple, then there exists some P ′′ ∈ C with
the same property. Furthermore C can be computed efficiently with a greedy algorithm.

Intuitively, in our case U will be the set of alternating paths of length κ starting at
some free node and ending at some node s, so that there exists some augmenting path
P ◦ P ′ of length κ+ κ′ ≤ 2`+ 1 with P ∈ U as a prefix. Our construction shows that it
is sufficient to maintain the cover C of U in our trees Tv. In turn, this can be achieved
by allowing each directed edge ab to appear in up to `O(`) trees at the same level. This
affects the values of the parameters ∆ and C and the running time only by a constant
factor (depending on `).

1.2 Other Related Work

Given the existence of a polynomial lower bounds for maintaining even the value of the
maximum matching (see below), approximate matching algorithms have been studied.

The Fully Dynamic Setting: Onak and Rubinfeld [31] gave an O(1)-approximation
in amortized O(log2 n) update time; this was improved by Bhattacharya et al. [9, 10]
to a deterministic (2 + ε)-approximation with polylogarithmic amortized update time.
Extending prior work by Ivkovic and Lloyd [22] and Baswana et al. [5], Solomon [34]
gave an algorithm to maintain a maximal (hence 2-approximate) matching with high
probability in amortized constant update time. For worst-case update times, Bhat-
tacharya et al. [9] showed (2 + ε)-approximation for the fractional setting with update
time O(log3 n). This was recently extended to the integral setting independently by Arar
et al. [3] and Charikar and Solomon [12]. For bipartite graphs, Bernstein and Stein [7]
gave a (3/2 + ε)-approximation with update time O( 4

√
m). Building on work by Neiman

and Solomon [30], Gupta and Peng [18] showed a (1 + ε)-approximation with update
time O(

√
m/ε2); this was improved for low arboricity graphs by Peleg and Solomon [32].



The Incremental Setting: The incremental setting has received much less attention.
As mentioned above, Gupta [16] gave a (1 + ε)-approximation for this setting, with
amortized O(log2 n)-update time. His approach is based on the multiplicative-weight-
update method, which makes it unlikely that an improved analysis will yield constant
update times. Moreover, his approach is based on maintaining fractional matchings,
which makes it harder to extend it to the non-bipartite case. Recently, Gupta and
Khan [17] gave an algorithm for maintaining an exact matching with an amortized
update time of O(n), which is essentially optimal (see below for lower bounds). Other
incremental models have been considered in the online algorithms literature, e.g., the
bipartite vertex-arrival model of Karp, Vazirani, and Vazirani [24]. In this setting, Bosek
et al. [11] give algorithms matching the runtime of Hopcroft-Karp [21], and Bernstein
et al. [6] bound the number of edge-changes. Solomon also studied the number of edge-
changes in the fully dynamic and incremental setting [35]. Edge-arrivals have also been
studied in the streaming and online model: while better-than-2 results are known for
random-order models [25, 4, 19], nothing better than a factor-2 approximation is known
for the case of adversarial arrivals; also, see [15, 23] for some lower bounds in these
settings.

Lower Bounds: Abboud and Williams [2] gave polynomial lower bounds on the up-
date time when maintaining a maximum bipartite matching under different conjectures:
their lower bounds are worst-case in the incremental or decremental case, and amor-
tized in the fully dynamic case. Henzinger et al. [20] gave a stronger lower bound of
Ω(m1/2−o(1)) for the mentioned cases under the OMv conjecture. Kopelowitz et al. [26]
showed that maintaining a maximum matching in incremental or decremental graphs
requires amortized Ω(n0.333−o(1)) update time assuming the 3-SUM conjecture. Dahl-
gaard [13] showed that even for planar bipartite graphs, no algorithm to maintain a
maximum matching in the incremental setting can have amortized O(n1−ε) update time
under OMv (see also [1]).

2 Preliminaries

Let G = (V,E) be an unweighted undirected graph. Given a subgraph G′ (possibly
described as a subset of edges), we denote by V (G′) and E(G′) its node and edge set,
resp. In order to simplify the notation, we sometimes use G′ instead of V (G′) or E(G′)
when the meaning is clear from the context. We denote the neighborhood of a node v
by N(v).

A matching is a set of edges M ⊆ E such that no two edges of M share a common
node. We call the nodes in V (M) matched, and the remaining nodes free or unmatched.
Similarly, edges in M are matched, and the remaining edges are unmatched. By OPT we
denote a matching of maximum cardinality. An alternating path is a path whose edges
alternate between unmatched and matched ones. An augmenting path is an alternating
path whose endpoints are both free. We denote the symmetric difference of two sets A
and B by A⊕ B := (A ∪ B) \ (A ∩ B). If P is an augmenting path with respect to M ,
then P ⊕M is a matching. For a collection of node-disjoint paths P, we use P also to
denote the union of their edges. The following claim follows from standard matching



theory.

Lemma 2.1. Let M be a matching and let OPT denote an optimal matching. Then for
any ` there exists a set of node-disjoint augmenting paths P` of length at most 2` + 1
such that `+1

` · |M ⊕ P`| ≥ |OPT |.

Proof. Let Q := M ⊕ OPT . Q consists of even length alternating paths and cycles, or
augmenting paths. The former two we can ignore, as they do not increase the size of the
matching. Let P` be the set of augmenting paths of length at most 2` + 1 of Q. Then
OPT` := M ⊕ P` has no augmenting paths of length at most 2` + 1. It is well-known
(see, e.g., [21]) that the latter condition implies `+1

` |OPT`| ≥ |OPT|.
Given a rooted tree T and a node v ∈ V (T ), by degT (v) we denote the number of

children of v, and by levT (v) the level of v (with root at level 0). We say that an edge
of T is at level i if its bottom endpoint is at that level.

Proofs and detailed that are omitted from this extended abstract will appear in the
full version of the paper.

3 The Incremental Algorithm: Bipartite Graphs

In this section we will focus on the case of bipartite graphs. This will allow us to
introduce part of the main ideas, while avoiding some technical complications due to the
presence of blossoms in the general case.

The graph G is represented via lists of neighbouring nodes. As usual in the incre-
mental setting, we assume that the graph initially contains no edges. Furthermore, for
simplicity, we assume that the set of nodes is known and fixed a priori (with correspond-
ing data structures correctly initialized). The second assumption can be removed by
standard doubling techniques, with an additive constant amortized cost per insertion.

Recall that for each (undirected) edge {a, b} we consider its two oppositely directed
versions ab and ba, and search for directed augmenting paths, i.e., directed paths P =
(a0, . . . , a2q+1) where all edges of type {a2i, a2i+1} are unmatched and all edges of type
{a2i+1, a2i+2} are matched.

We will store multiple copies a′ of the same node a in different trees Tv. In order to
simplify the notation, we will simply denote one such copy by a when the meaning is
clear from the context.

3.1 The Variables

In the following C, ∆, and ` are constant parameters depending on ε to be fixed later.
The current approximate matching is denoted by M . We maintain the following vari-
ables.

• For each matched node v ∈ V (M), its mate mate[v] (i.e. {v, mate[v]} ∈ M). We
set mate[v] = null if v is free.

• For each free node v /∈ V (M), one alternating path tree Tv initially containing
v only. Intuitively, these trees are used to discover (directed) augmenting paths
having v as an endpoint. In the following we consider the degree degTv(w) and



level levTv(w) of w in Tv as updated implicitly. By Tv(a) we denote the v-a path
in Tv.

• For each level i = 0, 1, . . . , 2` and each node a ∈ V , the root Ri[a] = v of the tree
Tv containing a at level i (null if there is no such tree).

• For each level i = 0, 1, . . . , 2` and each node a ∈ V , an integer counter Ci[a]
initialized to 0. Intuitively, the sum of the counters is an estimate of the current
matching size up to constant factors.

We critically maintain the following invariant for the trees Tv.

Invariant 3.1 (Tree Invariant). Each tree Tv is maximal w.r.t. the following constraints
under insertion of edges:

• (Alternating Path) For each leaf a ∈ Tv, Tv(a) is an even-length duplicate-free
alternating path. Furthermore, no node a at even level in Tv is adjacent to a free
node b /∈ Tv(a).

• (Depth) The depth of each Tv is at most 2`.

• (Degree) The maximum degree of each Tv is at most ∆.

• (Counter) No Tv contains a node w at level i with Ci[w] ≥ C.

• (Duplication) For each level i and node a, a can appear in at most one tree Tv
at level i (hence Ri[a] is well defined).

We will assume that Invariant 3.1 holds before each edge insertion, and we will later
show how to restore it after the insertion of some edge. Note that the first 2 properties
are essentially the same as those in the previously described variant of Hopcroft-Karp
algorithm, while the last 3 properties are a novelty of our approach.

3.2 The Procedures

Upon insertion of an edge {a′, b′} we execute the main procedure insert({a′, b′}) which
is described in Figure 1. This procedure exploits two global variables Paug and Vexp.

Variable Paug is used to store any discovered augmenting path (of length at most
2` + 1). Variable Vexp is a vector indexed by levels i ∈ {0, 1, . . . , 2` + 1}. Each Vexp[i],
i ≥ 1, contains a list of directed edges bc. Intuitively, each such bc is an edge that
can be potentially inserted at level i in some tree Tv. Furthermore, in the case that bc
belongs to (or is inserted in) some tree Tv, it is possible that the subtree rooted at c is
not maximal. As a boundary case, Vexp[0] contains pairs of type vv. Intuitively, this
corresponds to nodes v for which we have to reconstruct the entire tree Tv.

Procedure insert() adds {a′, b′} to G, and initializes Paug and Vexp to the empty
set4 (lines 1-2). Then (lines 3-4) it adds a′b′ and b′a′ to Vexp[i] for each odd level i.
Intuitively, these are (unmatched) edges that wish to be added to some Tv for the first
time. Finally it executes a while loop (lines 5-11) that iterates as long as at least one of
Paug or Vexp is not empty. In each execution of the loop, it first checks if Paug 6= null,

4For Vexp this means that all its entries are empty lists.



insert({a′, b′})
1: Add {a′, b′} to G
2: Paug ← ∅, Vexp ← ∅
3: for i ∈ {1, 3, . . . , 2`+ 1} do
4: Vexp[i]← Vexp[i] ∪ {a′b′, b′a′};
5: while Paug 6= ∅ ∨ Vexp 6= ∅ do
6: if Paug 6= ∅ then
7: augment();
8: Paug ← ∅;
9: else

10: Extract bc from non-empty
Vexp[i] with minimum i;

11: expand(bc, i);

Figure 1: Procedures insert().

in which case it calls the subroutine augment() and then resets Paug to null (lines 6-8).
Otherwise (lines 9-11), it extracts bc from the non-empty Vexp[i] with minimum i, and
calls expand(bc, i).

The subroutine augment() (see Figure 2) is intuitively used to implement the aug-
menting path Paug = (a0, . . . , a2q+1). This procedure updates the matching to M ⊕Paug
(line 3). Furthermore, it destroys each tree Tv that intersect Paug, which involves the
following operations5. It increments the counter Ci[w] of any node w ∈ Tv appearing at
level i (lines 4-5). Then (lines 6-7) it adds to Vexp[i] each edge bc ∈ E(Tv) ∩M at even
level i. Note that these edges do not belong to Paug (due to the update of the matching
in line 3). It also adds (lines 8-9) all the edges of Paug ∩M , in both directions, to Vexp[i]
for each even i ≥ 2. These are newly created matching edges that might be inserted
potentially at any even level. Finally, in lines 10-15, the procedure sets each involved
tree Tv to ({v}, ∅) if v is free and C0[v] < C, and to null otherwise. In the first case it
also adds vv to Vexp[0] to recall that the tree Tv has to be reconstructed. The Rj ’s are
updated in an obvious way.

The recursive subroutine expand(c, i) is described in Figure 3. Intuitively, this is the
subroutine that is used to construct the trees Tv, and to keep them maximal. It gets a
pair bc and a level i ≥ 0 (with b = c for i = 0). This procedure halts if the counters of b
or c for the associated level reach the threshold C, and also if Paug 6= null or i ≥ 2`+2.

Lines 3-11 apply to the case that i is odd. Their goal is to insert the unmatched
edge bc at level i in up to one tree Tv if possible without violating the Tree Invariant.
Intuitively, bc corresponds to some newly inserted edge {a′, b′} introduced in lines 3-4
of insert(). In this case b needs to be already contained in some tree Tv at level i − 1.
Lines 5-6 check if c closes an augmenting path in Tv. If not (lines 7-11), the procedure
tries to add a path of type bcd to Tv, if this is possible respecting the Tree Invariant. In
that case, it calls recursively expand(cd, i+ 1).

5A “partial destruction” of trees would also work, but we here consider the total destruction case to
simplify the presentation.



augment()

1: Let Paug = (a0, . . . , a2q+1);
2: Let r(Paug) be the set of roots of trees Tv containing some node in Paug;
3: Update mate according to M ←M ⊕ Paug;
4: for each v ∈ r(Paug) and each w ∈ Tv, with i := levv(w) do
5: Ci[w]← Ci[w] + 1;
6: for each v ∈ r(Paug) and each bc ∈ E(Tv) ∩M at even level i do
7: Vexp[i]← Vexp[i] ∪ {bc};
8: for each bc ∈ Paug ∩M and each i ∈ {2, 4, . . . , 2`} do
9: Vexp[i]← Vexp[i] ∪ {bc, cb};

10: for each v ∈ r(Paug) do
11: if v is free ∧ C0[v] < C then
12: Set Tv ← ({v}, ∅) and update Ri’s;
13: Vexp[0]← Vexp[0] ∪ {vv};
14: else
15: Set Tv ← null and update Ri’s;

Figure 2: Procedure augment().

Lines 12-15 apply to the case that i ≥ 2 is even and bc ∈ M . Here the procedure
tries to append bc at level i in some tree Tv if this does not violate the Tree Invariant.
Intuitively, this corresponds to the case that bc is either a newly created matching edge, or
some already existing matching edge that used to belong to a tree that was destroyed by
augment(). In both case adding bc to some tree might be needed to restore maximality.

Lines 16-24 apply to the case that i is even and bc ∈M (hence i ≥ 2) or b = c is free.
Then, if c is contained at level i in some Tv, the procedure tries to find an augmenting
path containing Tv(c) (lines 18-19). If such path is not found, the procedure expands
in a maximal way the subtree of Tv rooted at c (lines 20-24). This is done by adding
paths of type cde, whenever possible without violating the Tree Invariant, and calling
expand(de, i+ 2) recursively.

3.3 Analysis

The slightly technical proof of this lemma is deferred to Section A in the appendix.

Lemma 3.2. The Tree Invariant holds at the end of each execution of insert().

Let us next analyze the approximation factor of the algorithm. We first observe the
following direct consequence of Lemma 3.2.

Lemma 3.3 (Witness Lemma). Let P be an augmenting path of length at most 2`+ 1
undetected by the algorithm. Then one of the following two conditions holds for some
w ∈ V (P ):

1. A copy of w appears in some Tv and degTv(w) = ∆.
2. A copy of w appears in some Tv at level i and Ci[w] ≥ C.

Proof. Assume for the sake of contradiction that there exists an augmenting path P
not satisfying the two conditions. We consider the directed augmenting path P =



expand(bc, i)

1: if i ≥ 2`+ 2 ∨ Paug 6= null ∨ Ci[c] ≥ C ∨ Ci−1[b] ≥ C then
2: halt;
3: if i is odd ∧ bc /∈M then
4: if v := Ri−1[b] 6= null then
5: if c is free then
6: Set Paug ← Tv(b) ◦ (b, c) and halt;
7: else
8: Let d = mate[c];
9: if degTv

[b] < ∆ ∧ Ri+1[d] = null ∧ Ci+1[d] < C ∧ c, d /∈ Tv(b) then
10: Add {bc, cd} to Tv and update Rj ’s;
11: expand(cd, i+ 1);
12: if i ≥ 2 is even ∧ bc ∈M then
13: for all neighbors a of b do
14: if v := Ri−2[a] 6= null ∧ degTv

(a) < ∆ ∧ Ri[c] = null ∧ b, c /∈ Tv(a) then
15: Add {ab, bc} to Tv and update Rj ’s;
16: if i is even ∧ (bc ∈M ∨ b = c is free) ∧ v := Ri[c] 6= null then
17: for all neighbors d of c do
18: if d is free then
19: Set Paug ← Tv(c) ◦ (c, d) and halt;
20: else
21: Let e = mate[d];
22: if degTv

(c) < ∆ ∧ Ri+2[e] = null ∧ Ci+1[d] < C ∧ Ci+2[e] < C ∧ d, e /∈ Tv(c) then
23: Add {cd, de} to Tv and update Rj ’s;
24: expand(de, i+ 2);

Figure 3: Procedure expand(), bipartite graphs.

(u′, α1, β1, α2, β2, . . . , αk, βk, u
′′), with k ≤ `, and let ei = αiβi. Observe that, by con-

struction, whenever a node is matched, it remains matched for the rest of the algorithm.
We prove by induction that for each ei, there exists a tree Txi containing ei at level 2i.

This easily implies a contradiction. Indeed, Txk(βk) ◦ (βk, u
′′) would be an augmenting

path undetected by the algorithm, contradicting the Alternating Path invariant (note
that it cannot be xk = u′′ since bipartite graphs do not contain blossoms).

For the base case e1, if e1 is contained at level 2 in some tree Tu′ the claim holds
with x1 = u′. Otherwise, observe that the path (u′, α1, β1) satisfies the constraints
Degree, Counter, Alternating Path and Depth w.r.t. Tu′ . Hence, by the maximality of
Tu′ implied by Lemma 3.2, the only reason why this path is not added to Tu′ is because
e1 is already contained at level 2 in some other tree, a contradiction.

The inductive step follows analogously. Assume the claim holds up to edge ei, i < `,
and consider edge ei+1. By assumption ei is contained at level 2i in some tree Txi . If
Txi also contains ei+1 at level 2i+ 2 the claim holds with xi+1 = xi. Otherwise, observe
that adding the path (βi, αi+1, βi+1) to Txi would not violate the constraints Degree,
Counter, Alternating Path and Depth w.r.t. Txi . Hence, again by the maximality of
Txi , edge ei+1 must be contained at level 2i+ 2 in some other tree Txi+1 .

Lemma 3.4. At the end of each insert(), |OPT|
|M | ≤

`+1
` (1 + 2`

∆ + 16`2∆`

C ).



Proof. Let P` be the set of node-disjoint augmenting paths guaranteed by Lemma 2.1
w.r.t. M . We have

|OPT|
|M |

≤ `+ 1

`

|M |+ |P`|
|M |

(1)

By the Witness Lemma 3.3, we can partition P` into the following two subsets:

• The paths Pdegree ⊆ P` that satisfy the degree condition of Lemma 3.3.

• The remaining paths Pcount = P` \ Pdegree that (have to) satisfy the counter
condition of Lemma 3.3.

We next upper bound the size of these two sets in terms of |M | and of the constant
parameters of the algorithm. For a path P ∈ Pdegree, let us choose arbitrarily exactly
one copy wP of some node of P that appears in some tree Tv with degree ∆ at some
(even) level i. Let MP be the ∆ matching edges that descend from wP and appear
at level i + 2. We charge each one of these edges by an amount 1/∆. Intuitively,
this corresponds to a distribution of the increase of the matching size (by 1) due to P .
Observe that each directed matching edge at some level i can be charged at most once
by the node disjointness of the augmenting paths P` and by the Duplication constraint.
Hence each matching edge is charged by at most 2`/∆. It follows that

|Pdegree| ≤ 2`

∆
|M |. (2)

Consider next Pcount. Each augmenting path P discovered by the algorithm increases
the matching size by precisely 1. The corresponding total increase of counters equals
the number n(P ) of (copies of) nodes in the trees Tv, v ∈ r(P ), destroyed because of P .
One has

n(P ) =
∑

v∈r(P )

|V (Tv)| ≤
∑

v∈r(P )

4∆` (3)

= |r(P )| · 4∆` ≤ (2`(2`− 1) + 2) · 4∆`

≤ 16`2∆`.

In the first inequality above we used the fact that each Tv contains at most 4∆` nodes for
∆ ≥ 2, and in the second-last inequality the fact that r(P ) contains the (free) endpoints
of P plus at most 2` entries for each one of the 2` − 1 matched nodes in P . We can
conclude that the sum of the counters is

∑
v∈V

∑2`
i=0Ci[v] ≤ 16`2∆` · |M |.

Let VC be the nodes with counters set to at least C. Observe that |VC | cannot exceed
the sum of all counters divided by C, since no counter exceeds that value. In the worst
case each w ∈ VC hits a distinct path in Pcount. Therefore,

|Pcount| ≤ |VC | ≤
1

C

∑
v∈V

2∑̀
i=0

Ci[v] (4)

≤ 1

C
· 16`2∆` |M |.



Altogether, we achieve

|OPT |
|M |

(1)

≤ `+ 1

`

|M |+ |Pdegree|+ |Pcount|
|M |

(2)+(4)

≤ `+ 1

`

(
1 +

2`

∆
+

16`2∆`

C

)
.

It remains to bound the running time of the algorithm.

Lemma 3.5. The amortized running time per insertion is O(`2 · C + `3 ·∆`).

Proof. We analyze the cost of the different procedures, excluding the cost of the corre-
sponding calls to subroutines.

Procedure augment() can be executed at most m times. The cost of each such
execution on Paug is asymptotically dominated by the total number n(Paug) of nodes
contained in trees Tv with v ∈ r(Paug), that is O(`2 ·∆`) by (3).

In procedure insert() lines 1-4 cost O(`) per edge insertion. Each execution of
the while loop (lines 5-11) costs O(`). There are at most m such executions where
Paug 6= null, and each such execution adds at most O(`2∆`) entries to Vexp by the same
argument as before. Hence lines 5-11 have a total cost of at most O(`3∆` ·m).

It remains to consider the total cost of the procedure expand(bc, i). Let deg(v) denote
the degree of node v in the final graph. Lines 3-11 cost O(`), and are executed twice
for each odd level i and for each newly inserted edge {a′, b′}. Hence their total cost is
O(`2 ·m).

Each execution of lines 12-15 costsO(`·deg(b)). Let us charge this cost to b. Note that
b cannot be charged more than C times for each even level i by the Counter Invariant.
Indeed, each call to expand(bc, i) for some c, excluding possibly the first time that b is
added to some tree due to line 11, implies that edge bc was contained at level i in some
destroyed tree Tw. The latter event in turn implies the increment of Ci−1[b]. Hence the
total cost of these lines is

∑
i=1,3,...,2`−1

∑
b∈V O(C` · deg(b)) = O(C`2 ·m).

Each execution of lines 16-24 costs O(` · deg(c)). Let us charge this cost to c. By
the same argument as above, c is charged at most C times for each even level i. Hence
the total cost of these lines is

∑
i=0,2,...,2`

∑
c∈V O(C` · deg(b)) = O(C`2 ·m). The claim

follows.

The proof of Theorem 1.1 in the bipartite case follows easily.

Proof of Theorem 1.1. (Bipartite Case) W.l.o.g. assume that 1/ε is integer and ε ≤ 1.

Let us choose ` = 4
ε , ∆ = 8`

ε and C = 64`2∆`

ε . From Lemma 3.5 the amortized time

per insertion is O((1/ε)O(1/ε)). From Lemma 3.4, the approximation factor is at most
`+1
` (1 + 2`

∆ + 16`2∆`

C ) ≤ (1 + ε
4)(1 + 2ε

4 ) ≤ 1 + ε. The claim follows.



4 The Incremental Algorithm: General Graphs

In this section we deal with the case of general graphs. In Section 4.1 we describe our
simple-paths covering algorithm. In Section 4.2 we sketch the changes of the bipartite-
case algorithm and analysis that are needed to address general graphs.

4.1 Simple-Paths Covering

We say that a simple path P ′ (respectively, P ) is a valid suffix (resp., valid prefix) of
another simple path P (resp., P ′) if the concatenated path P ◦ P ′ is a (valid) simple
path; the concatenated path P ◦ P ′ is valid and simple iff the two paths intersect at a
single vertex: the first and last vertex along paths P ′ and P , resp. Let U = Us be a
set of paths all ending at some arbitrary vertex s. We say that a path P ′ is covered by
U if at least one path P ∈ U is a valid prefix of P ′; for any integer i ≥ 1, denote by
Coveri(U) the set of length-i paths covered by U . A subset C = Cs of paths from U is
called an i-cover of U if any length-i path covered by U is also covered by C as well, i.e.,
Coveri(U) = Coveri(C). We remark that in our application U will refer to a set of paths
of a given graph, while P ′ is merely interpreted as any sequence of distinct nodes.

Fix two integers κ, κ′ ≥ 1, a vertex s, and any set U of length-κ (simple) paths
ending at s. In what follows we present and analyze a simple algorithm, Algorithm
GreedyCover, for efficiently computing a κ′-cover C of U . The cover C computed by this
algorithm will be referred to as the greedy cover (for U). Although the greedy cover is
not necessarily of minimum size, we will show that its size depends only on κ and κ′ (and
not on |U|). It is a-priori unclear and perhaps counterintuitive that such a simple-paths
cover exists for any path set U (even for κ′ = 1), even regardless of the time needed for
constructing it.

The order of paths in the input path set U determines the output path set C; we

thus assume that the paths of U are stored in some linked list, denoted by
−→
U , according

to a predetermined order. Similarly, the output path set C is stored in some linked list,

denoted by
−→
C ; it is technically convenient to guarantee that the paths will be stored in−→

C according to their order in
−→
U . We shall henceforth refer to

−→
U and

−→
C as the input

and output path sequences or lists, where
−→
C = GreedyCover(

−→
U , κ′).

Algorithm GreedyCover is recursive. The base of the recursion if κ′ = 1, in which

case the algorithm works as follows. Write the input path sequence
−→
U =

−→
U s as

(P1, . . . , Pu), with u = |U|. Write P1 = (v1, . . . , vκ+1 = s). The algorithm scans
−→
U

once per each vertex of P1 except vκ+1: For each vertex vi, i = 1, . . . , κ, let P (vi) be

the first path in
−→
U starting with P2 that does not go through vi, setting P (vi) = null

if none exists. The output path sequence
−→
C =

−→
C s is obtained by taking all non-null

paths in {P1, P (v1), P (v2), . . . , P (vκ)} according to their original order in
−→
U , leaving a

single occurrence of each path in
−→
C .

For κ′ > 1 the algorithm proceeds as follows. Write the input path sequence
−→
U =

−→
U s

as (P1, . . . , Pu), with u = |U|. The algorithm computes a κ′-cover for
−→
U recursively,

where (κ′ − i)-covers are computed at the ith recursion level, for i = 0, 1, . . . , κ′ − 1.
The recursion bottoms at 1-covers, which are computed using the already described



algorithm for κ′ = 1. Write P1 = (v1, . . . , vκ+1 = s). The algorithm scans
−→
U once per

each vertex of P1 except vκ+1: For each vertex vi, i = 1, . . . , κ, it first computes the

path subsequence of
−→
U that consists of all paths starting at P2 that do not go through

vi, denoted by
−−−→
U(vi), and then invokes the algorithm recursively to compute a (κ′ − 1)-

cover for
−−−→
U(vi). The output path sequence

−→
C is obtained as follows: First compute the

path set that consists of P1 as well as every path in any of the (κ′− 1)-covers computed

recursively, and then place all those paths in
−→
C according to their order in

−→
U , leaving

a single occurrence of each path in
−→
C .

Lemma 4.1. The running time of GreedyCover(U , κ′) is O((κ+ 1)κ
′ · |U|).

Proof. We prove by induction on κ′ that the runtime of the algorithm is bounded by
c((κ+1)κ

′ ·|U|), for a sufficiently large constant c. For κ′ = 1 the running time is trivially
O(κ · |U|).

We next assume the correctness of the inductive statement for κ′−1 and prove it for
κ′, with κ′ ≥ 2. By induction hypothesis, the runtime of recursively computing each of
the (κ′−1)-covers is bounded by c((κ+1)κ

′−1 ·|U|). Since there are κ such (κ′−1)-covers,
the overall runtime of these recursive computations is bounded by

κ(c((κ+ 1)κ
′−1)|U|)

= c((κ+ 1)κ
′ |U|)− c((κ+ 1)κ

′−1|U|).

The time needed for computing the κ subsequences
−−−→
U(v1), . . . ,

−−−→
U(vκ) of

−→
U is naively

bounded by O(κ · |U|). Clearly, the time needed for computing
−→
C given the (κ′ − 1)-

covers obtained by the recursive computations is linear in the sum of sizes of those covers,
which is naively bounded by κ · |U|, disregarding the time needed for guaranteeing that

each path will have a single occurrence in
−→
C . But the latter time is easily bounded by

O(k · |U|) as well. Since κ′ ≥ 2, it follows that the overall runtime of the algorithm is
bounded by

c((κ+ 1)κ
′ · |U|)− c((κ+ 1)κ

′−1 · |U|)
+O(κ · |U|)

≤ c((κ+ 1)κ
′ · |U|)

for a sufficiently large constant c.

Lemma 4.2. GreedyCover(U , κ′) outputs a (feasible) κ′-cover C of U of size at most
(κ+ 1)κ

′
.

Proof. Let us first bound the size of C. For κ′ = 1, this size is trivially at most κ + 1.
We next assume the correctness of the inductive statement for κ′− 1 and prove it for κ′,
with κ′ ≥ 2. By induction hypothesis, each of the (κ′ − 1)-covers computed recursively
is of size bounded by (κ + 1)κ

′−1. Since there are κ such (κ′ − 1)-covers, their union
contains at most κ · (κ+ 1)κ

′−1 ≤ (κ+ 1)κ
′ − 1 paths. The computed κ′-cover C contains

the paths in this union as well as P1, hence its size is bounded by (κ+ 1)κ
′
.



Consider next the correctness of the algorithm. Let us start with κ′ = 1. Consider
any length-1 path P ′ = (s, t) covered by U , and let P ∈ U be a valid prefix of P ′. We
argue that P ′ is covered by C. If P1 is a valid prefix for P ′, we are done. Otherwise P1

must go through t. Let i ∈ [κ] be such that vi = t. Since P ∈ U is a valid prefix of
P ′, P (vi) 6= null. By definition, P (vi) is a simple path ending at s that does not go
through vi = t, hence P (vi) ∈ C is a valid prefix of P ′.

We next assume the correctness of the inductive statement for κ′−1 and prove it for
κ′, with κ′ ≥ 2. Consider any length-κ′ path P ′ = (s = u1, u2, . . . , uκ′+1) covered by U ,
and let P ∈ U be a valid prefix of P ′. We argue that P ′ is covered by C. Recalling that
P1 ∈ C, the case that P1 is a valid prefix of P ′ is immediate. We henceforth assume that
P ′ goes through at least one vertex, denoted by v, among the first κ vertices v1, . . . , vκ
of P1; write v as both vi and uj , with i ∈ [κ], j ∈ [2, κ′ + 1]. The fact that P ∈ U is a

valid prefix of P ′ implies that P does not go through vi, and therefore P ∈
−−−→
U(vi), which

means that P ′ is covered by U(vi). Now consider the length-(κ′ − 1) path P̃ obtained
from P ′ by removing vertex uj from it, i.e., P̃ = (s = u1, . . . , uj−1, uj+1, . . . , uκ′+1) if
j ≤ κ′ and P̃ = (s = u1, . . . , uκ′) if j = κ′+ 1.6 Since P is a valid prefix of P ′, it is also a

valid prefix of P̃ . By induction hypothesis and since P ∈
−−−→
U(vi) is a valid prefix of P̃ , it

follows that P̃ is covered by the (κ′ − 1)-cover computed recursively for
−−−→
U(vi), denoted

by
−→
Ci ; let Π be a path in

−→
Ci that is a valid prefix of P̃ . Since Π belongs to U(vi), it does

not go through vi = uj , hence Π is also a valid prefix of P ′. Noting that Π ∈ Ci ⊆ C
concludes the proof.

The following observation, implied by the description of the algorithm, will be useful
in the sequel.

Observation 4.3. Let κ, κ′ ≥ 1, let
−→
U =

−→
Us be any sequence of κ-length paths all ending

at an arbitrary vertex s, and let
−→
C =

−→
Cs = GreedyCover(

−→
U , κ′). Then GreedyCover(

−→
C , κ′) =

−→
C , and more generally:

• For any supersequence
−→
C ′ =

−→
C ′s of

−→
C in which all elements of

−→
C appear at the start

in
−→
C ′, GreedyCover(

−→
C ′, κ′) returns a supersequence of

−→
C in which all elements of

−→
C appear at the start.

• For any subsequence
−→
C ′ =

−→
C ′s of

−→
C , we have GreedyCover(

−→
C ′, κ′) =

−→
C ′.

4.2 Algorithm and Analysis for General Graphs

In this section we sketch how to update the algorithm and analysis to address the case
of general graphs. The details will appear in the full version of the paper.

As mentioned in the introduction, we need to allow nodes to appear at the same level
in multiple trees if we want to detect augmenting paths despite the presence of blossoms.
However, we critically need that the number of copies of a given node is bounded by
some function ρ of ` only. This way, by scaling the constants ∆ and C properly (by a

6The paths are not restricted to an underlying graph, so any sequence of vertices without repetitions
forms a simple path.



factor depending on ρ), we can still have a 1 + ε approximation in constant amortized
time by essentially the same analysis as in the bipartite case.

Having at hand our simple-paths covering notion and algorithm, the solution is rel-
atively straightforward modulo a number of small technical details. Intuitively, consider
an augmenting path Paug = (v0, v1, . . . , v2q+1), 2q + 1 ≤ 2` + 1, whose nodes are be-
low the degree and counter threshold. We would like to guarantee that Paug or some
other augmenting path intersecting with it is discovered by the algorithm. Consider
node vi, 1 ≤ i ≤ 2q, and let P = (v0, v1, . . . , vi) and P ′ = (vi, vi+1, . . . , v2q+1) be the
corresponding prefix and suffix of Paug, resp. In particular, P and P ′ have length κ = i
and κ′ = 2q + 1 − i, resp. For our goals it is sufficient to guarantee that vi belongs to
some tree Tw such that Tw(vi) ◦ P ′ is a valid augmenting path. In turn, this property is
guaranteed if we ensure the following. Let Pi(vi) be the collection of (simple alternating)
paths of length κ that start at the root w of some tree Tw and end at a copy of vi. It is
sufficient to guarantee that Pi(vi) is a κ′-cover with respect to a proper set of paths U of
length κ that includes P . In particular, this implies that there exists some P ′′ ∈ Pi(vi)
such that P ′′ ◦ P ′ is a valid augmenting path.

It is therefore sufficient to modify the Tree Invariant in order to incorporate the above
notion of κ′-covers, and modify the algorithm so that the new invariant is maintained.
Using our GreedyCover algorithm to update the paths, we can ensure that the number
of paths of type Pi(vi) (hence the number of copies of each node at a given level i) never
exceeds a constant ρ = `O(`). In turn this implies an increase of the running time by a
constant factor depending on ρ due to maintaining the mentioned κ′-covers dinamically.

The proof of Theorem 1.1 for general graphs follows, modulo technical details.
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A Proof of the Tree Invariant Lemma 3.2

Let us show that the Tree Invariant is maintained by insert().

Lemma A.1. If procedure expand(bc, i) ends with Paug = null and with c belonging to
some Tv, then the subtree of Tv rooted at c satisfies the Tree Invariant constraints and
is maximal w.r.t. those constraints.



Proof. Let us assume that c finally belongs to some tree Tv and Paug = null, otherwise
there is nothing to show. We remark that expand() might be called on some edge bc that
does not belong to any Tv initially, and might fail to insert c in any such tree. We prove
the claim by induction on decreasing values of i. The claim trivially holds whenever
i = 2`+ 1. Indeed in that case it cannot happen that Paug = null and at the same time
c is added to some tree Tv. Similarly, the claim holds for i = 2` since in that case the
subtree rooted at c contains c only.

Suppose next that the claim is true up to level i + 1 and consider level i. For odd
i, bc must be some newly inserted edge. In that case expand(), if possible, adds a path
of type bcd to some tree Tv, and then calls expand(cd, i + 1). The claim follows by
induction. For even i, expand() adds bc at level i in some tree Tv, if needed, then adds a
maximal set of paths of type cde to Tv, and for each such path it calls expand(de, i+ 2).
The claim follows by inductive hypothesis.

Proof of Lemma 3.2. We prove the claim by induction on the number of insertions. The
claim is trivially true before the first insertion. Next assume the claim holds for the
first j − 1 insertions, and let {a′, b′} be the j-th inserted edge. Observe that, whenever
we add an edge to any tree Tv, this is via a call to expand(). By definition, the latter
procedure augments trees without violating the constraints of the Tree Invariant until
it terminates or finds an augmenting path involving Tv (that leads to the destruction
of Tv). Therefore, it is sufficient to show that the trees Tv are maximal w.r.t. the Tree
Invariant constraints at the end of the execution of insert({a′, b′}).

Assume by contradiction that this is not the case, in particular there exists a non-
maximal tree Tv at the end of the procedure. Note that this implies that v is free at
that time.

We distinguish two cases. Suppose first that vv is inserted in Vexp[0] at least once,
and let t be the last iteration when vv is extracted from Vexp[0]. Upon execution of
expand(vv, 0) at iteration t, we cannot find an augmenting path involving v. Indeed
otherwise the following call to augment() would match v. Thus, by Lemma A.1, Tv is
maximal, a contradiction.

We can therefore assume that the non-maximal tree Tv at the end of the while loop
involves a pair vv which never appears in Vexp[0]. Let T startv and T endv be the status
of Tv at the beginning of the first iteration of the while loop and at the end of the
procedure, respectively. Since Tv is never destroyed by augment(), it can be updated
only by expand(), than can only add edges and nodes to Tv. Thus, for any intermediate
status T ′v of Tv, one has:

T startv ⊆ T ′v ⊆ T endv . (5)

If no augmenting path is ever discovered, then by inductive hypothesis the only
possibility for a tree Tw to be non-maximal is that Tw should include a′b′ at some odd
level i for the newly inserted edge {a′, b′}. However the calls to expand(a′b′, i) guarantee
that a′b′ is inserted in at most one such tree Tw if possible, and in that case the subtree
of Tw rooted at b′ is later augmented in a maximal way by Lemma A.1. Hence there
cannot exist a non-maximal tree Tv, a contradiction.



We can therefore assume that some first augmenting path Paug is discovered. This
path clearly contains the edge a′b′ or b′a′. We can therefore conclude that T startv does
not contain nodes a′ nor b′, since otherwise it would be destroyed by the first call to
augment(). This in turn implies that T startv is maximal at the beginning of the first
iteration of the while loop, since the unmatched edges a′b′ and b′a′ cannot be added to
it.

By assumption, T endv is not maximal. In particular, there must exist a tuple (a, b, c, i),
with abc not contained in T endv and i ≥ 2 even, such that: (i) Ci[a], Ci+1[b], Ci+2[c] < C
and degT end

v
(a) < ∆, (ii) a ∈ T endv at level i and b, c /∈ T endv (a), (iii) {a, b} /∈ M and

{b, c} ∈ M , (iv) bc is not contained at level i + 2 in some tree Tw at the end of the
procedure.

Let T tv be the status of Tv at any discrete time slot t between the beginning of the
first while loop and the end of the procedure. By the previous discussion there must exist
one such time slot t so that T tv violates precisely one of the analogues of the conditions
(i)-(iv), while T t

′
v satisfies all of them for any t′ > t. We next distinguish 4 subcases,

depending on the condition (x) that is violated by T tv .

Case (x)=(i). This case cannot occur since counters can only increase over time, and
the same holds for degTv(a) by (5).

Case (x)=(ii). Then a ∈ T t+1
v . This involves a call of type expand(wa, i), that must

add abc to Tv at some later point since the conditions (i), (iii) and (iv) are satisfied at
any time t′ ≥ t+ 1 by definition. This contradicts the assumptions.

Case (x)=(iii). This means that an execution of augment() at time t + 1 either (1)
turns edge {a, b} from matched to unmatched, or (2) turns edge {b, c} from unmatched
to matched. However (1) cannot occur since it would imply the destruction of Tv (given
that a ∈ Tv at that time). Assuming (2), by construction bc is added to Vexp[i+ 2] and
hence insert() executes expand(bc, i + 2) at some later time. At that point the tuple
(a, b, c, i) satisfies all the conditions (i)-(iv), which implies that expand(bc, i + 2) must
add bc to a maximal number of trees Tw at level i. This contradicts the assumptions.

Case (x)=(iv). This implies that bc is removed at time t+ 1 from some tree Tw where
it was contained at level i + 2. This however implies that at some later point insert()
executes expand(bc, i+2). At that point all conditions (i)-(iv) hold, hence expand() must
add bc to a maximal number of trees Tw at level i. This contradicts the assumptions.
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