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Abstract

Aggregating the preferences of individuals into a collective decision is the core subject of study of
social choice theory. In 2006, Procaccia and Rosenschein considered a utilitarian social choice setting,
where the agents have explicit numerical values for the alternatives, yet they only report their linear
orderings over them. To compare different aggregation mechanisms, Procaccia and Rosenschein intro-
duced the notion of distortion, which quantifies the inefficiency of using only ordinal information when
trying to maximize the social welfare, i.e., the sum of the underlying values of the agents for the chosen
outcome. Since then, this research area has flourished and bounds on the distortion have been obtained
for a wide variety of fundamental scenarios. However, the vast majority of the existing literature is
focused on the case where nothing is known beyond the ordinal preferences of the agents over the alter-
natives. In this paper, we take a more expressive approach, and consider mechanisms that are allowed to
further ask a few cardinal queries in order to gain partial access to the underlying values that the agents
have for the alternatives. With this extra power, we design new deterministic mechanisms that achieve
significantly improved distortion bounds and, in many cases, outperform the best-known randomized
ordinal mechanisms. We paint an almost complete picture of the number of queries required to achieve
specific distortion bounds.

1 Introduction

Social choice theory [Brandt et al., 2016] is concerned with aggregating the preferences of individuals into
a joint decision. In an election, for instance, the winner should represent well (in some precise sense) the
viewpoints of the voters. Similarly, the expenditure of public funds is typically geared towards projects
that increase the well-being of society. Most traditional models assume that the preferences of individuals
are expressed through ordinal preference rankings, where each agent sorts all alternatives from the most
to the least favorable according to her. Underlying these ordinal preferences, it is often assumed that there
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exists a cardinal utility structure, which further specifies the intensity of the preferences [Von Neumann and
Morgenstern, 1947; Bogomolnaia and Moulin, 2001; Barbera et al., 1998]. That is, there exist numerical
values that indicate how much an agent prefers an outcome to another. Given this cardinal utility structure,
usually expressed via valuation functions, one can define meaningful quantitative objectives, with the most
prominent one being the maximization of the utilitarian (or social) welfare, i.e., the sum of the values of the
agents for the chosen outcome.

The main rationale justifying the dominance of ordinal preferences in the classical economics literature
is that the task of asking individuals to express their preferences in terms of numerical values is arguably
quite demanding for them. In contrast, performing simple comparisons between the different options is
certainly more easily conceivable. To quantify how much the lack of cardinal information affects the max-
imization of quantitative objectives like the social welfare, Procaccia and Rosenschein [2006] defined the
notion of distortion for mechanisms as the worst-case ratio between the optimal social welfare (which would
be achievable using cardinal information) and the social welfare of the outcome selected by the mechanism,
which has access only to the preference rankings of the agents. Following their agenda, a plethora of subse-
quent works studied the distortion of mechanisms in several different settings, such as normalized valuation
functions [Boutilier et al., 2015], metric preferences [Anshelevich et al., 2018; Anshelevich and Postl, 2017],
committee elections [Caragiannis et al., 2017], and participatory budgeting [Benade et al., 2017].

Somewhat surprisingly, the different variants of the distortion framework studied in this rich line of
work differentiate between two extremes: we either have complete cardinal information or only ordinal
information. Driven by the original motivation for using ordinal preferences, it seems quite meaningful to
ask whether improved distortion guarantees can be obtained if one has access to limited cardinal information,
especially in settings for which the worst-case distortion bounds are already quite discouraging [Boutilier
et al., 2015]. We formulate this idea via the use of cardinal queries, which elicit cardinal information from
the agents. These queries can be as simple as asking the value of an agent for a possible outcome, or even
asking an agent whether an outcome is at least x times better than some other outcome, according to her
underlying valuation function. Note that questions of the latter form are much less demanding than eliciting
a complete cardinal utility structure, and thus are much more realistic as an elicitation device (see also the
discussion below).

In this paper, we enhance the original distortion setting of Procaccia and Rosenschein [2006] and
Boutilier et al. [2015] on single winner elections, by allowing the use of cardinal queries. In their setting,
there are n agents that have cardinal values over m alternatives, and the goal is to elect a single alterna-
tive that (approximately) maximizes the social welfare, while having access only to ordinal information.
Procaccia and Rosenschein [2006] proved that no deterministic mechanism can achieve a distortion better
that Ω(m) when agents have unit-sum normalized valuation functions (i.e., the sum of the values of each
agent for all possible alternatives is 1), which was later on improved to Ω(m2) by Caragiannis et al. [2017].
Under the same assumption, Boutilier et al. [2015] proved that the distortion of any (possibly randomized)
mechanism is between Ω(√m) and O(√m · log∗ m). Here we show how – with only a limited number of
cardinal queries – deterministic mechanisms can significantly outperform any mechanism that has access
only to ordinal information, even randomized ones.

1.1 Our Contributions

We initiate the study of trade-offs between the number of cardinal queries per agent that a mechanism uses
and the distortion that it can achieve. In particular, we show results of the following type:

The distortion D(M) of a mechanismM that makes at most λ queries per agent is O(g(m, λ)).
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What our results suggest is that we can drastically reduce the distortion by exploiting only a small amount
of cardinal information.

Query Model

We consider two different types of cardinal queries, namely value queries and comparison queries.

• A value query takes as input an agent i and an alternative j, and returns the agent’s value for that
alternative.

• A comparison query takes as input an agent i, two alternatives j, ` and a real number d and returns
“yes” if the value of agent i for alternative j is at least d times her value for alternative `, and “no”
otherwise.

Note that value queries are in general stronger than comparison queries, as they reveal much more detailed
information. On the other hand, comparison queries are quite attractive as an elicitation device, since the
cognitive complexity of the question that they pose is not much higher than that of forming a preference
ranking. Additionally, comparison queries can also be interpreted under the original utility framework
defined by Von Neumann and Morgenstern [1947]. The idea there is that a cardinal scale for utility is
possible because agents are capable of not only performing comparisons between alternatives, but also
between lotteries over alternatives. For example, an agent i should be able to tell whether she prefers
alternative a with certainty, or alternative b with probability 1/2. Assuming risk-neutrality, this is equivalent
to asking the comparison query with parameters (i,a, b,1/2).

It should be clear that upper bounds (distortion guarantees) for comparison queries are stronger than
those for value queries, whereas lower bounds (inapproximability bounds) are stronger when proven for
value queries. All of our lower bounds are for value queries, while our main upper bounds extend to com-
parison queries as well.

Results and Techniques

We warm-up in Section 3 by using λ simple prefix value queries per agent (i.e., ask her at the first λ positions
of her preference ranking). By selecting the alternative with the highest social welfare restricted to the query
answers (the revealed welfare), we obtain a linear improvement in the distortion, specifically 1 + (m − 1)/λ.
We show that this result is asymptotically optimal, among all mechanisms that use λ prefix queries per agent.

In Section 4, we devise a class of more sophisticated mechanisms that achieve much improved trade-offs
between the distortion and the number of queries. In particular, our class contains

• a mechanism that achieves constant distortion using at most O(log2 m) queries per agent, and

• a mechanism that achieves a distortion of O(√m) using O(log m) queries, matching the performance of
the best possible randomized mechanism in the setting of [Boutilier et al., 2015], and outperforming
all known randomized mechanisms for that setting.

Our mechanisms are based on a binary search procedure, which for every agent finds the last alternative
a in the agent’s preference ranking such that the agent’s value for a is at least 1/k times the value for her
most-preferred alternative α∗, for some chosen parameter k. Then, the mechanism simulates the value of the
agent for all alternatives that the agent ranks between α∗ and α by her value for α, and outputs the alternative
that maximizes the simulated welfare. By repeatedly applying this idea for appropriately chosen values of

3



k, we explore the trade-offs between the distortion and the number of queries, when the latter range from
log m to log2 m per agent.

In Section 5, we significantly improve on our O(√m) result (second bullet above) for the fundamental
case n = Θ(m). We present a mechanism that achieves a distortion of O(√m), using only 2 queries per
agent. The core idea behind this mechanism is choosing an appropriate threshold τ and then carefully
querying the agents based on this threshold. First, the mechanism queries every agent at the first position,
and the remaining queries (one per agent) are made in successive steps. During the `-th step, the mechanism
queries about alternatives that are ranked at the first ` positions by at least τ agents, but only if such a query
is meaningful and possible; we never repeat a query and we never ask an agent more than twice. The query
process terminates in at most m steps and the mechanism returns an alternative with maximum revealed
welfare. This result demonstrates that with the clever use of very limited cardinal information, one can
outperform all possible mechanisms (even randomized) in the purely ordinal setting.

In Section 6 we extend the ideas of Section 4 to show that the mechanism which achieves a constant
distortion using O(log2 m) value queries, can actually be transformed into a mechanism which uses the
same number of comparison queries. In particular, we show how to approximate an agent’s value for her
most-preferred alternative using only O(log2 m) comparison queries.

In Section 7 we present several lower bounds on the possible achievable trade-offs between the number
of queries and distortion. These bounds follow by explicit instances where we carefully define a single
ordinal preference profile as well as the cardinal information that may be revealed by the value queries of
any mechanism. This information is defined in such a way so that, no matter how the mechanism makes
its selection, it is always possible to create a superconstant gap between the optimal social welfare and the
social welfare of the winning alternative.

We conclude the paper in Section 8 with several interesting open problems, and a particular set of very
challenging conjectures about the tight trade-offs between the number of queries and distortion.

An overview of our main results can be found in Table 1. An alternative representation of our results is
given in Figure 1, which depicts the trade-offs between the number of queries and the distortion.

Remark 1 (Normalization assumptions). We remark here that all of our upper bounds for value queries
hold without any normalization assumption on the cardinal values, contrary to the results of [Procaccia and
Rosenschein, 2006] and almost all subsequent works in the related literature, which typically assume that
values are normalized according to the unit-sum normalization. We do use the unit-sum normalization in
Section 6, where we use comparison queries.1 For the lower bounds, we prove bounds both for normalized
and unrestricted values.

Remark 2 (Noisy queries). Throughout this work we implicitly assume that agents can accurately answer
all value or comparison queries. In fact, this is not necessary for any of our positive results! That is, we
may assume that the answers to the queries are noisy, e.g., because it requires extra effort for the agents to
precisely determine these answers. As long as each inaccurate answer is at most a (multiplicative) constant
factor away from the truth, all our upper bound proofs go through, at the expense of worse constants. Note
that lower bounds are stronger when proven for exact queries, as is the case here.

1Actually, our results hold even if one uses other reasonable normalizations. In particular, for the other common normalization
assumption in the literature [Caragiannis et al., 2018; Feige and Tennenholtz, 2010; Filos-Ratsikas and Miltersen, 2014], the unit-
range normalization, where the value of an agent for her most-preferred alternative is 1 and all other values are in the interval [0,1],
the results of Section 4 obviously extend verbatim to the case of comparison queries.
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Number of queries Upper Bounds Lower Bounds

0 (ordinal, deterministic) O(m2) [Caragiannis and Procaccia, 2011] Ω(m2) [Caragiannis et al., 2017]

0 (ordinal, randomized) O(√m log∗ m) [Boutilier et al., 2015] Ω(√m) [Boutilier et al., 2015]

1 (value) O(m) [1-PRV, Theorem 1]
Ω(m) [Theorem 9]

Ω(√m) [Theorem 11]

λ ≥ 2, constant (value) O(√m) [
√

m-TRV, Theorem 6]? Ω(m1/2(λ+1)) [Corollary 5]

O
(

logm
log logm

)
(value) O(√m) [

√
m-TRV, Theorem 6]? Ω(log log m) [Corollary 5]

O(log m) (value) O(√m) [O(1)-ARV, Corollary 2] Ω(1)
O(log2 m) (value) O(1) [O(log m)-ARV, Corollary 2] Ω(1)
O(log2 m) (comparison) O(1) [O(log m)-ARV, Corollary 4] Ω(1)

Table 1: A table showing the most important results in the paper. All our results are for deterministic mech-
anisms. Results marked by ? hold for n = Θ(m). Results for unit-sum valuation functions are highlighted;
everything else is for unrestricted valuation functions.
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Figure 1: A graphical representation of the trade-offs between the number of queries and the distortion.
Points and lines in red represent upper bounds, while points and lines in blue represent lower bounds. The
black points correspond to tight bounds, and the red square point corresponds to the distortion of the best-
known randomized ordinal mechanism.

1.2 Related Work

The distortion framework was introduced by Procaccia and Rosenschein [2006], and has been studied sub-
sequently in a series of papers, most prominently by Boutilier et al. [2015], who consider a general social
choice setting, under the unit-sum normalization; this general model was also previously studied by Cara-
giannis and Procaccia [2011] who considered different methods to translate the values of the agents for the
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alternatives into rankings (embeddings), and more recently by Filos-Ratsikas et al. [2019] who bounded the
distortion of deterministic mechanisms in district-based elections. A related model is that of distortion of
social choice functions in a metric space, which was initiated by Anshelevich et al. [2018], and has since
then been studied extensively [Anshelevich and Postl, 2017; Goel et al., 2017; Fain et al., 2019; Goel et al.,
2018; Anshelevich and Zhu, 2018; Pierczynski and Skowron, 2019; Gross et al., 2017; Cheng et al., 2017,
2018; Feldman et al., 2016; Ghodsi et al., 2019; Borodin et al., 2019; Munagala and Wang, 2019]. In this
setting, there is no normalization of values (or costs), but the valuation (or cost) functions are assumed to
satisfy the triangle inequality. Similar distortion frameworks, in a metric space or under normalizations,
have also been studied for other related problems, such as matching and clustering [Anshelevich and Sekar,
2016; Abramowitz and Anshelevich, 2018; Anshelevich and Zhu, 2017, 2018; Filos-Ratsikas et al., 2014].

Two related variants of the problem are k-winner elections, where k alternatives are to be elected instead
of one [Caragiannis et al., 2017; Benade et al., 2019], and participatory budgeting, where every alternative is
associated with a cost, and one or more alternatives have to be elected in a manner that ensures that the total
cost does not exceed a pre-specified budget constraint [Lu and Boutilier, 2011]. Benade et al. [2017] studied
the k-winner participatory budgeting problem, but interestingly, they considered a more expressive model
for the preferences of the agents, compared to simple preference rankings. In particular, they considered the
knapsack votes model of [Goel et al., 2016], rankings by value, rankings by value-for-money and threshold
votes. While the first three are not very relevant for our purposes, the latter one can be thought of as a
different type of (more expressive) query, in which a numerical value is specified, and every agent is asked
to return the set of alternatives for which her value is above this threshold. Bhaskar et al. [2018] used a
different model with thresholds drawn from U[0,1] to construct a randomized social choice function that
approaches a distortion of 1 as the number of agents approaches infinity.

Very recently, Mandal et al. [2019] study a related model to ours, in which agents are asked to provide
cardinal information, but there is a restriction on the number of bits to be communicated to the mechanism.
Hence, they study trade-offs between the number of transmitted bits and distortion. This is markedly quite
different from what we do here, as a query in their setting has access to the (approximate) values of an agent
for many alternatives simultaneously, and is therefore much too expressive when translated in our setting.
On the other hand, the setting of Mandal et al. [2019] does not assume “free” access to the ordinal prefer-
ences, which are also considered as part of the elicitation process. We consider our work complementary
to theirs, as they are mostly motivated by the computational limitations of elicitation (corresponding to a
communication complexity approach), whereas we are motivated by the cognitive limitations of eliciting
cardinal values, as often highlighted in the classical literature of social choice (corresponding to a query
complexity approach).

Finally, at the same time and independently of our work, Abramowitz et al. [2019] also introduce a
setting in which the mechanism designer has access to some cardinal information on top of the ordinal
preferences. This enables the design of improved mechanisms in terms of distortion. While the motivation
of their paper is the same as ours, the approaches are inherently different. Besides the fact that Abramowitz et
al. [2019] study a metric distortion setting, whereas we study a general setting with valuation functions that
which are either unrestricted or normalized according to unit-sum, there is another fundamental distinction.
The access to the cardinal information in [Abramowitz et al., 2019] is not via queries. Instead, it is given
explicitly as part of the input in terms of a threshold τ, which allows the designer to know the number of
agents for which the distance to an alternative a is at most 1/τ times their distance to another alternative b.
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2 The model

We consider a standard social choice setting, in which there is a set A of m alternatives and a set N of n
agents. Our goal is to elect a single alternative based on the preferences of the agents, which are expressed
through valuation functions vi : A→ R≥0 that map alternatives to non-negative real numbers. For notational
convenience, we use vi j instead of vi( j) to denote the cardinal value of agent i for alternative j, and refer to
the matrix v = (vi j)i∈N , j∈A as a valuation profile. By V we denote the set of all possible valuation profiles.
Clearly, the valuation function vi also defines a preference ranking for agent i, i.e., a linear ordering �i of A
such that j �i j ′ if vi j ≥ vi j′; we assume that ties are broken according to a deterministic tie-breaking rule,
e.g., according to a fixed global ordering of the alternatives.2 We refer to �v= (�1, . . . ,�n) as an (ordinal)
preference profile.

In this work, we consider the following two families of valuation functions:

• Unrestricted valuation functions, which may take any non-negative real values.

• Unit-sum valuation functions, which are such that
∑

j∈A vi j = 1 for every agent i ∈ N .

The social welfare of alternative j ∈ A with respect to v is the total value of the agents for j: SW( j |v) =∑
i∈N vi j . Our goal is to output one of the alternatives who maximize the social welfare, i.e., an alternative

in arg maxj∈A SW( j |v). This is clearly a trivial task if one has full access to the valuation profile. However,
we assume limited access to these cardinal values. In particular, we assume that we only have access to
the preference profile v� and can also learn cardinal information by asking queries. We consider two types
of queries: value queries that reveal the value of an agent for a given alternative, and comparison queries
that reveal whether the value of an agent for an alternative is a multiplicative factor larger than her value for
some other alternative.

Definition 1. Given a preference profile, a query about the underlying cardinal values is called

• A value query, if it takes as input an agent i and an alternative j and returns the agent’s value vi j for
that alternative. This is implemented via the function V : N × A → R≥0. We say that agent i is
queried at position k, if alternative j is ranked k-th in �i and we make the queryV(i, j).

• A comparison query, if it takes as input an agent i, two alternatives j, ` and a real number d, and
returns YES if vi j ≥ d · vi` , and NO otherwise. This is implemented via the function C : N × A × A ×
R≥0 → {YES,NO}.

Clearly, value queries reveal more information than comparison queries. Note that the information
obtained by a comparison query can be obtained by at most two value queries. On the other hand, however,
without any cardinal information or any normalization assumption, it is impossible to even approximate
the information obtained by a value query using only comparison queries. In this sense, value queries are
considerably stronger than comparison queries.

Definition 2. A mechanism M = (Q, f ) with access to a (value or comparison) oracle takes as input a
preference profile �v and returns an alternative. In particular, it consists of the following two parts:

• An algorithm Q that takes as input the preference profile �v, adaptively makes queries to the oracle,
and returns the set of answers to these queries.

2It would be equivalent to allow ties at this point, get pre-linear orderings instead, and leave the tie-breaking to the mechanisms
when necessary.
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• A mapping f that takes as input the preference profile �v and the set Q(�v) of answers to the queries
above, and outputs a single alternative j ∈ A. Such a mapping is called a social choice function.

By the description of Q above, it is clear that the mechanism is free to choose the positions at which
each agent will be queried, and those can depend not only on �v, but on the answers to the queries already
asked as well. The performance of a mechanism is measured by its distortion.

Definition 3. The distortion of a mechanismM is

D(M) = sup
v∈V

maxj∈A SW( j |v)
SW(M(�v)|v) ,

where SW( j |v) is the social welfare of alternative j given a particular valuation profile, andM(v�) is the
output of the mechanism on input �v.

Throughout our proofs, it will be useful to partition the quantity SW( j |v), into two separate quantities
depending on the cardinal information we obtain from the queries. This is particularly relevant when we
deal with value queries, but even for comparison queries we use a similar decomposition in Section 6.

Definition 4. The revealed welfare SWr ( j |v) of j is the contribution to SW( j |v) of agents that have been
queried for alternative j via value queries, i.e., SWr ( j |v) =

∑
i∈N :V(i, j)∈Q(�v) vi j . The remaining quantity

SW( j |v) − SWr ( j |v) is called the concealed welfare SWc( j |v) of j.

3 Warm-Up: Mechanisms Using Fixed-Position Value Queries

We start the presentation of our technical results with the class of mechanisms that query every agent at the
first λ ≥ 1 positions. A particular member of this class is the mechanism that uses the Range Voting (RV)
social choice function to decide the outcome. Formally, RV takes as input the whole valuation profile v and
elects an alternative x with maximum social welfare: x ∈ arg maxj∈A SW( j |v). In our case, since v is not
fully known, we deploy RV only on the revealed valuation profile, where any unknown value is assumed to
be zero.

To be more specific, let Tk( j) be the set of agents that rank alternative j ∈ A at position k ∈ [m]. Our
mechanism first queries every agent at each of the first λ positions of her preference ranking. Then, it elects
the alternative y that maximizes the revealed welfare: y ∈ arg maxj∈A SWr ( j |v). We refer to this mechanism
as λ-Prefix Range Voting (λ-PRV).

Mechanism λ-PRV(�v)
1 for j ∈ A do
2 SWr ( j |v) = 0
3 for i ∈ N do
4 for k ∈ [λ] do
5 Make a query to learnV(i, ji(k)), where ji(k) is the k-th favorite alternative of agent i
6 SWr ( ji(k)|v) = SWr ( ji(k)|v) +V(i, ji(k))
7 Let y ∈ arg maxj∈A SWr ( j |v) be an alternative achieving the best revealed welfare
8 return y
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Theorem 1. The distortion of λ-PRV is D(λ-PRV) ≤ 1 + m−1
λ , even for unrestricted valuation functions.

Proof. Consider some instance with valuation profile v. Let x be an alternative that maximizes the social
welfare according to v, and let y be the alternative that is elected by λ-PRV. Recall that here the revealed
welfare of any alternative j ∈ A is SWr ( j |v) =

∑λ
k=1

∑
i∈Tk (j) vi j . Since SW(y |v) ≥ SWr (y |v), it suffices

to show that SW(x |v) ≤ (
1 + m−1

λ

)
SWr (y |v). To this end, we will bound the revealed and the concealed

welfare of x separately.
Since y is an alternative that maximizes the revealed welfare, we have that SWr (y |v) ≥ SWr ( j |v) for

every j ∈ A, and therefore

SWr (x |v) ≤ SWr (y |v) . (1)

Now, consider the agents in
⋃m

k=λ+1 Tk(x). They are not queried about their value for x, and therefore con-
tribute to the concealed welfare of x. For every such agent i there exist λ different alternatives ji(1), . . . , ji(λ)
that i ranks above x, and for whom she has value vi, ji (1), . . . , vi, ji (λ) ≥ vix .3 Consequently, we have that

SWc(x |v) =
m∑

k=λ+1

∑
i∈Tk (x)

vix ≤
m∑

k=λ+1

∑
i∈Tk (x)

vi, ji (1) + . . . + vi, ji (λ)
λ

=
1
λ

∑
j∈A\{x }

SWr ( j |v) ≤ 1
λ

∑
j∈A\{x }

SWr (y |v) = m − 1
λ

SWr (y |v) . (2)

The statement now follows by (1) and (2).

Clearly, the distortion guarantee of λ-PRV improves linearly in the number of queries λ. Nevertheless,
it is interesting to see for which values of λ the mechanism achieves distortion O(√m) and O(1). These are
given by the following statement.

Corollary 1. The distortion of λ-PRV is

D(λ-PRV) =
{

O(√m), for λ = Θ(√m)
O(1), for λ = Θ(m)

Next, we show that, in terms of distortion, λ-PRV is the best possible mechanism among those that make
at most λ prefix value queries.

Theorem 2. Any mechanism that makes λ prefix value queries per agent has distortion Ω(m/λ), even for
unit-sum valuation functions.

Proof. Consider an instance with n agents and m = n alternatives a1, . . . ,am. Let λ ≤ m/2. We define the
following ordinal profile:

• The λ favorite alternatives of agent i are ai,ai+1, . . . ,ai+λ−1 in decreasing order, where all the indices
are considered modulo m. Hence, all alternatives appear exactly once at each of the first λ positions.

• Alternatives x = a1 and y = aλ+1 appear m/2 times each at position (λ+ 1), in the m− λ ≥ m/2 agent
rankings in which they do not appear at the first λ positions. Observe that, by definition, x and y do
not appear together at the first λ positions in any preference ranking, and there are multiple ways to
decide in which rankings each of them appears at position (λ + 1); any such construction works for
our purposes.

3When the subscripts have subscripts themselves, we follow the common practice of separating them with commas.
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• For every agent, the remaining alternatives are arbitrarily ordered at positions (λ + 2) up to m.

See Table 2 for a specific example of the ordinal profile.

agent ranking

1 a1 a2 a3 a4 a5 a6

2 a2 a3 a1 a4 a5 a6

3 a3 a4 a1 a2 a5 a6

4 a4 a5 a3 a1 a2 a6

5 a5 a6 a1 a3 a2 a4

6 a6 a1 a3 a2 a4 a5

Table 2: An example of the ordinal profile used in the proof of Theorem 2 with m = n = 6 and λ = 2, where
x = a1, y = a3, Tλ+1(x) = {2,3,5} and Tλ+1(y) = {1,4,6}.

The valuation profile v is such that each agent has value 1
λ+1 for her first λ favorite alternatives. It is

without loss of generality to assume that any mechanism that knows the ordinal information of this instance
and also makes λ prefix value queries, must elect either x or y. To see this, first notice that given the revealed
cardinal information, the revealed welfare of all alternatives is the same. Further, given the particular prefer-
ence profile, it is easy to always complete the valuation profile v in a way that guarantees that no alternative
has more concealed welfare than x and y; indeed, the two possible valuation profiles we consider have this
property.

So, assume that the mechanism selects alternative y (the case of x being completely symmetric). Now
the remaining values of the agents are such that the m/2 agents in Tλ+1(x) have value 1

λ+1 for x and 0 for the
remaining alternatives, while the m/2 agents in Tλ+1(y) have value 1

(m−λ)(λ+1) for all alternatives at positions
λ + 1 up to m.

Given this valuation profile v, the social welfare of the winner y is

SW(y |v) = λ

λ + 1
+

m
2

(m − λ)(λ + 1) ≤ 1 .

In contrast, the social welfare of the optimal alternative x is

SW(x |v) = λ + m
2

λ + 1
+

m
2

(m − λ)(λ + 1) ≥
m

2(λ + 1) .

Therefore, the distortion of any mechanism is at least m
2(λ+1) .

We now turn our attention to a slightly more general class of mechanisms which query all agents at
the same fixed positions, and show that λ-PRV remains best possible among the mechanisms of this class
for unrestricted valuation functions. In Section 7 we further show that 1-PRV is best possible among all
mechanisms that make one query per agent for unrestricted valuation functions.

Theorem 3. For unrestricted valuation functions, any mechanism that makes λ fixed-position value queries
per agent has distortion Ω(m/λ).

10



Proof. Let λ ≤ m/2. Consider any mechanism of this class, and let ` be the first position at which it does not
query the agents. Observe that if ` > λ, then the mechanism only makes prefix value queries. In this case,
the bound follows by Theorem 2, which holds for unit-sum valuation functions, and thus for unrestricted
ones as well. So, we may assume that ` ∈ [λ].

Now, we consider an instance with n = m that is very similar to the one presented in the proof of
Theorem 2. Essentially, we substitute (λ + 1) with `, and we have that all alternatives appear exactly once
at each of the first ` − 1 positions, while two alternatives x and y appear m/2 times each at position `. The
remaining alternatives for every agent are arbitrarily ordered at position ` + 1 up to m.

The valuation profile v is such that each agent has value 1 for her first ` − 1 favorite alternatives, and
value 0 for the alternatives at positions ` + 1 up to m. Observe that the revealed welfare of all alternatives
is exactly equal to ` − 1. Given the revealed cardinal information and the particular ordinal profile, we can
argue exactly like we did in the proof of Theorem 2 about fact that it is without loss of generality to assume
that the mechanism elects either x or y. So, assume that the mechanism selects alternative y; the case of x
is symmetric. The remaining values of the agents are such that the m/2 agents in T`(x) have value 1 for x,
while the m/2 agents in T`(y) have value 0 for y.

Given this valuation profile v, the social welfare of the winner y is SW(y |v) = ` − 1 ≤ λ − 1, while the
social welfare of the optimal alternative x is SW(x |v) = ` − 1 + m

2 ≥ m
2 . Therefore, the distortion of the

mechanism is Ω(m/λ).

4 Achieving Constant Distortion

Our goal in this section is to further explore the additional power that cardinal queries provide, and focus on
the design of mechanisms with improved distortion guarantees. Mechanism λ-PRV is a good first step in this
direction, but it needs to make a quite large number of queries per agent in order to do so; in particular, by
Corollary 1, it achieves distortion O(√m) for λ = Θ(√m) and constant distortion for λ = Θ(m). Therefore,
it is natural to ask whether it is possible to design mechanisms that achieve similar distortion bounds, but
require much less queries per agent. We manage to answer this question positively.

For any k ∈ [m], we define a mechanism which we call k-Acceptable Range Voting (k-ARV). Let
λ1, . . . , λk be k thresholds such that λ` = m

`
k+1 for ` ∈ [k]. For every agent i ∈ N , we first query her value v∗i

for her favorite alternative ji(1) and let Si,0 = { ji(1)}. Then, using binary search we compute the maximal
λ`-acceptable set Si,` = { j ∈ A : vi j ≥ v∗i /λ`} for every ` ∈ [k]. We continue by constructing a new
approximate valuation profile ṽ, where the values of every agent i are

• ṽ∗i = v∗i ;

• ṽi j = v∗i /λ` for every j ∈ Si,` \ Si,`−1 with ` ∈ [k];
• ṽi j = 0 for every j ∈ A \ Si,k .

We finally elect the alternative z ∈ A that maximizes the social welfare according to the approximate valua-
tion profile: z ∈ arg maxj∈A

∑
i∈N ṽi j .

Now, we proceed by proving an upper bound on the distortion achieved by k-ARV as a function of k.

Theorem 4. The mechanism k-ARV makes O(k log m) direct value queries per agent, and has distortion
D(k-ARV) = O( k+1√m).
Proof. Consider any instance with valuation profile v. Since mechanism k-ARV executes a binary search in
order to compute the λ`-acceptable sets for each ` ∈ [k], it requires a total of O(k log m) value queries per

11



Mechanism k-ARV(�v)
1 for i ∈ N do
2 Let v∗i = V(i, ji(1)), where ji(p) is the alternative that agent i ranks at position p
3 Let ṽi, ji (1) = v∗i
4 Let Si,0 = { ji(1)}
5 for ` ∈ {1,2, . . . , k} do
6 Let λ` = m

`
k+1

7 Set p∗ = BSearch(1,m, λ`, v∗i )
8 Let Si,` = { j ∈ A : j �i ji(p∗)} /* define the λ`-acceptable set of agent i */
9 for j ∈ Si,` \ Si,`−1 do

10 Let ṽi j = v∗i /λ` /* define the approximate valuation profile */

11 for j ∈ A \ Si,k do
12 Let ṽi j = 0

13 for j ∈ A do
14 Let SWs( j |ṽ) = 0 /* compute the simulated welfare of alternative j */
15 for j ∈ A do
16 Set SWs( j |ṽ) = SWs( j |ṽ) + ṽi j
17 Let z ∈ arg maxj∈A SWs( j |ṽ) be an alternative achieving the best simulated welfare
18 return z

19 Procedure BSearch(α,β,λ,v)
20 if α = β then
21 return α

22 Let u = V(i, ji(α+β2 ))
23 if u ≥ v/λ then

24 BSearch(α+β2 , β, λ, v)

25 else
26 BSearch(α, α+β2 , λ, v)

12



agent. The rest of the proof is dedicated in bounding the distortion of k-ARV. First, we define some useful
notation:

• z is the alternative elected by k-ARV;

• y is a welfare-maximizing alternative for the valuation profile v̂, which is such that the value of agent
i ∈ N for alternative j ∈ A is

v̂i j =

{
0, if j ∈ A \ Si,k
vi j, otherwise.

That is, y ∈ arg maxj∈A
∑

i∈N v̂i j .

• x is the welfare-maximizing alternative for the true valuation profile v. That is, x ∈ arg maxj∈A
∑

i∈N vi j .

Also, let Nj(v) = {i ∈ N : vi j > 0} be the set of agents with strictly positive value for alternative j ∈ A. We
use the following easy fact about welfare-maximizing alternatives.

Lemma 1. If j ∈ arg maxj∈A
∑

i∈N vi j , then j ∈ arg maxj∈A
∑

i∈N j (v) vi j .

To prove the statement, we will bound the social welfare of x in terms of the social welfare of z for the
true valuation profile v. In particular, we will show that

SW(x |v) ≤
(
λ1 +

m
λk

)
SW(z |v) . (3)

Then, the approximation ratio of k-ARV will be

SW(x |v)
SW(z |v) ≤ λ1 +

m
λk
= 2 · m 1

k+1 = O( k+1√m) .

We partition the social welfare of x into the following two quantities: the contribution of the agents i
that place x in the λk-acceptable set Si,k , and the contribution of the remaining agents that have small value
for x. By definition, we have that i ∈ Nx(v̂) for any agent i such that x ∈ Si,k , and therefore

SW(x |v) =
∑

i∈Nx (v̂)
vix +

∑
i<Nx (v̂)

vix

We first consider the term
∑

i∈Nx (v̂) vix , and have that∑
i∈Nx (v̂)

vix ≤
∑

i∈Ny (v̂)
viy ≤ λ1 ·

∑
i∈Ny (v̂)

ṽiy ≤ λ1 ·
∑

i∈Nz (ṽ)
ṽiz ≤ λ1 ·

∑
i∈Nz (ṽ)

viz ≤ λ1 · SW(z |v) , (4)

where

• the first inequality follows by the definition of y, the simple fact that Nx(v̂) = Ny(v̂), and Lemma 1;

• for the second inequality it suffices to notice that for any i ∈ Ny(v̂) there exists an ` ∈ [k] such that

y ∈ Si,` \ Si,`−1, and thus vi j ≤ v∗i
λ`−1
= λ1 · v

∗
i

λ`
= λ1 · ṽi j ;

• the third inequality follows by the definition of z, the simple fact that Ny(v̂) = Nz(ṽ), and Lemma 1;

13



• the fourth inequality follows by the fact that vi j ≥ ṽi j , for every i ∈ N and j ∈ A;

• the last inequality is obvious.

Next, we consider the term
∑

i<Nx (v̂) vix . By the definition of Nx(v̂), for every i < Nx(v̂) it holds that x < Si,k ,
and hence vix < v∗i /λk . Using this, we obtain∑

i<Nx (v̂)
vix <

∑
i<Nx (v̂)

v∗i
λk
=

1
λk

∑
i<Nx (v̂)

v∗i ≤
1
λk

∑
j∈A\{x }

∑
i∈T1(j)

vi j , (5)

where T1( j) is the set of agents whose favorite alternative is j, and for whom v∗i = ṽ∗i = vi j = ṽi j . Since z it
the alternative that maximizes the quantity

∑
i∈N ṽi j , for every j , z we have that∑

i∈N
ṽiz ≥

∑
i∈N

ṽi j =
∑

i∈T1(j)
vi j +

∑
i∈N\T1(j)

ṽi j ≥
∑

i∈T1(j)
vi j .

Combining the above inequality together with the fact that viz ≥ ṽiz for every agent i ∈ N , we have that∑
i∈N

viz ≥
∑

i∈T1(j)
vi j .

Using this last inequality, (5) becomes∑
i<Nx (v̂)

vix ≤ 1
λk

∑
j∈A\{x }

∑
i∈T1(j)

vi j ≤ 1
λk

∑
j∈A\{x }

∑
i∈N

viz =
m − 1
λk

SW(z |v). (6)

Finally, the desired inequality (3) follows by combining inequalities (4) and (6).

The next statement follows by appropriately setting the value of the parameter k in Theorem 4, and
shows how mechanism k-ARV improves upon the distortion guarantees of λ-PRV using way less value
queries per agent.

Corollary 2. We have that

• 1-ARV achieves distortion O(√m) using O(log m) values queries per agent;

• log m-ARV achieves distortion O(1) using O(log2 m) value queries.

We conclude this section by showing that the analysis of k-ARV is tight.

Theorem 5. The distortion of k-ARV is Ω( k+1√m).

Proof. Recall that λ1 = m
1

k+1 = λ and consider the following instance with m alternatives A = {a1, ...,am}
and n = m − 2 agents. To simplify our discussion, let z = am−1 and x = am. The valuation profile v is such
that the values of agent i are

• vi,ai = vix =
λ

2λ+1 ,

• viz =
1

2λ+1 , and

• vi,a j = 0 for j ∈ [m] \ {i,m − 1,m}.

14



In the ordinal profile �v which is given as input to the mechanism, we assume without loss of generality that
agent i ranks alternative ai ahead of x.

Since 1
2λ+1 =

1
λ · λ

2λ+1 , k-ARV defines only one acceptable set per agent using λ. In particular, the
algorithm sets Si,1 = {x, z} for every agent i ∈ [m − 2]. Then, the approximate valuation profile ṽ is such
that the values of agent i are

• ṽi,ai =
λ

2λ+1 ,

• ṽix = ṽiz =
1

2λ+1 , and

• ṽi,a j = 0 for j ∈ [m] \ {i,m − 1,m}
For the approximate valuation profile ṽ, the social welfare of both alternatives x and z is

SW(x |ṽ) = SW(z |ṽ) = m − 2
2λ + 1

,

while any other alternative j ∈ A \ {x, z} has social welfare

SW( j |ṽ) = λ

2λ + 1
.

Hence, k-ARV might select alternative z as the winner instead of x, and the distortion is then

(m − 2) λ
2λ+1

(m − 2) 1
2λ+1

= λ =
k+1√m,

as desired.

5 Achieving
√
m Distortion with Two Value Queries

Here we present a more sophisticated mechanism, which makes two value queries per agent, and refines the
main ideas of the previous two sections. Like before, the first query is used to learn the value of each agent
for her favorite alternative. However, we would like to avoid making a naive second query as we do with
2-PRV. Ideally, we would like to ask each agent about an alternative that is qualitatively similar to the one
identified by 1-ARV; in other words, we would like to reveal for each agent the position where her value is
roughly 1/√m of that for her favorite alternative. Although maintaining the same guarantee as 1-ARV, while
substituting each binary search with a single query seems far-fetched, we do come very close. By utilizing
the available ordinal information globally rather than per agent, our mechanism achieves distortion O(√m)
with just two value queries, under the assumption that n = O(m). The crucial idea is that the second query
for each agent depends on the number of appearances of the alternatives in the whole ordinal preference
profile.

For any threshold τ ∈ N we define a mechanism called τ-Threshold Range Voting (τ-TRV). Before
stating the mechanism formally, we give a short high-level description. As noted above, the first query for
each agent is used to ask about her favorite alternative. The remaining queries are made in successive steps.
During the `-th step we make queries about alternatives that are ranked within the first ` positions by at least
τ agents. These queries are made only if they are meaningful and possible: we never repeat a query and
we never ask an agent more than twice. After at most m steps, τ-TRV returns an alternative with maximum
revealed welfare.
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We state the mechanism τ-TRV, as well as the main result of this section, Theorem 6, with respect to a
general threshold τ. Depending on the ranges of n and m we appropriately set τ to get Corollary 3. Recall
that Tk( j) is the set of agents that rank alternative j at position k. Thus, the set E` of eligible alternatives at
`-th step contains all alternatives j for which

��⋃`
k=1 Tk( j)

�� ≥ τ.

τ-TRV(�v)
1 for j ∈ A do
2 SWr ( j |v) = 0
3 for i ∈ N do
4 Make a query to learnV(i, ji), where ji is the top alternative of agent i
5 SWr ( ji |v) = SWr ( ji |v) +V(i, ji)
6 Q1 = N
7 for ` ∈ {2, . . . ,m} do
8 E` =

{
j ∈ A :

��⋃`
k=1 Tk( j)

�� ≥ τ} /* eligible alternatives of `-th step */
9 Q` = Q`−1 /* maintain the set of active agents who have been queried once */

10 for j ∈ E` do
11 for i ∈ Q` do
12 if i ∈ ⋃`

k=2 Tk( j) then
13 Make a query to learnV(i, j)
14 SWr ( j |v) = SWr ( j |v) +V(i, j)
15 Q` = Q` {i} /* agent i becomes permanently inactive */

16 Let y ∈ arg maxj∈M SWr ( j |v) be an alternative achieving the best revealed welfare
17 return y

Theorem 6. The mechanism τ-TRV has distortion D(τ-TRV) ≤ τ +min{m − 1,n/τ}, even for unrestricted
valuation functions.

Proof. Consider any instance with valuation profile v. If τ > n, then no alternative will ever be eligible, and
hence τ-TRV coincides with mechanism 1-PRV from Section 3; by Theorem 1, the distortion is at most m.
Consequently, in the rest of the proof we focus on the case τ ≤ n. Let y be the alternative elected by τ-TRV,
and x be an alternative that maximizes the social welfare. By the definition of the revealed welfare, we have
SW(y |v) ≥ SWr (y |v). We are going to show that SW(x |v) ≤ SWr (y |v) · (τ +min{m − 1,n/τ}); then the
statement follows.

By partitioning the optimal welfare into the revealed and the concealed welfare of x, we have

SW(x |v) = SWr (x |v) + SWc(x |v)
≤ SWr (y |v) + SWc(x |v) , (7)

where the inequality follows by the optimality of y with respect to the revealed welfare.
Next, we focus on bounding the quantity SWc(x |v). Let `∗ ∈ {2, ...,m} be such that x ∈ E`∗ but

x < E`∗−1. By definition, for any ` we have that x ∈ E` ⇒ x ∈ E`+1, and thus `∗ is unique. In fact, `∗ is the
smallest step in which alternative x becomes eligible. We can further partition the concealed welfare of x as

SWc(x |v) = SW<`∗
c (x |v) + SW≥`∗

c (x |v), (8)
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where

• SW<`∗
c (x |v) is the contribution to SWc(x |v) of agents who rank x at some position k < `∗;

• SW≥`∗
c (x |v) is the contribution to SWc(x |v) of agents who rank x at some position k ≥ `∗.

If `∗ = 2, then it is straightforward that SW<`∗
c (x |v) = 0. So, assume that `∗ ≥ 3. Observe that since

x < Ek for any k ∈ {2, ..., `∗ − 1}, there can be at most τ− 1 agents who rank x before position `∗. If ı̂ ∈ N is
such an agent, an obvious upper bound for the corresponding concealed value vı̂x is maxi∈N , j∈A vi j , and by
the queries in lines 3–5 of mechanism τ-TRV, we further know that maxi∈N , j∈A vi j ≤ SWr (y |v). Therefore,
we obtain the following upper bound

SW<`∗
c (x |v) ≤ (τ − 1) · SWr (y |v) . (9)

Finally, we consider the quantity SW≥`∗
c (x |v). Let S be the set of agents who rank x at position `∗ or

later, but were never queried their value for x. That is, S contains all agents that contribute to SW≥`∗
c (x |v).

We claim that any agent in S must be queried for an alternative that she prefers more to x.

Claim 1. If i ∈ S, then during some step, mechanism τ-TRV asks agent i in line 13 for some alternative j
such that j �i x.

Proof of claim. Let i ∈ S. By the definition of S, we know that i ∈ Tk(x) for some k ∈ {`∗, . . . ,m}. If agent
i has not been queried twice before step k, then i ∈ Qk and therefore it is guaranteed that τ-TRV queries
agent i in line 13 during step k. Note that this query is not necessarily about alternative x. During step k it
is possible that several other alternatives become eligible as well. If one of them appears at some of the first
k positions in the ranking of agent i and is examined before x in line 10, then i will be queried about this
alternative instead.

Now suppose that this second query is V(i, j) and is made during step s ≤ k. The condition in line 12
guarantees that i ranks j within the first s positions. Towards a contradiction, suppose that j �i x. We know
that j , x by the definition of S. So, it must be x �i j. Since i ranks x at position k, this implies that i ranks
j at position k + 1 > s or later, leading to a contradiction.

From the above claim, we obtain that the contribution of each agent i ∈ S to the revealed welfare of the
alternative j that i was queried for must be at least as high as her contribution to the concealed welfare of x.
Let Sj ⊆ S be the set of agents of S who were queried for alternative j instead of x. The total value of the
agents in Sj for j is only a part of the revealed welfare of j. So, we have

SW≥`∗
c (x |v) ≤

∑
j∈A {x }

∑
i∈S j

vi j ≤
∑

j∈A\{x }
SWr ( j |v)

≤ |{ j ∈ A {x}}| · SWr (y |v) .

What remains to be bounded is |{ j ∈ A {x}}|. Clearly the possible alternatives are bounded by m − 1.
Furthermore, since there are n agents, there can be at most n/τ such alternatives, as an alternative has to be
eligible when queried for, and each agent can only be queried for a single alternative at positions {2, ...,m}.
From this, it follows that

SW≥`∗
c (x |v) ≤ min{m − 1,n/τ} · SWr (y |v) . (10)
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Combining (7), (8), (9), and (10), we have that

SW(x |v) ≤ SWr (y |v) + (τ − 1) · SWr (y |v) +min{m,n/τ} · SWr (y |v)
= SWr (y |v) · (τ +min{m − 1,n/τ})
≤ SW(y |v) · (τ +min{m − 1,n/τ}) ,

and the statement follows.

It is not hard to see that Theorem 6 essentially translates to distortion O(min{m,√n}) with just two
queries, by setting τ = min{m,√n}. While this result is not always an improvement over the performance
of 1-PRV, it is interesting to interpret it for different ranges of n and m.

Corollary 3. The mechanism τ-TRV has distortion

D(τ-TRV) ≤


m , when n = ω(m2), for τ = 1√
n , when n = O(m2), for τ =

√
n√

m , when n = Θ(m), for τ =
√

m

Of course, the cases of Corollary 3 are neither exhaustive nor disjoint, yet they all deserve some attention.
The highlight of this section, is the fact that with only two value queries per agent the distortion is o(m),
as long as n = o(m2). In particular, for the special case where n = Θ(m) we deterministically match the
lower bound ofΩ(√m) for any randomized ordinal mechanism, and beat the best known randomized ordinal
mechanism of Boutilier et al. [2015] which achieves a distortion of O(√m · log∗ m).

However, even for the worst case of the corollary, it is interesting to note how exactly we recover the
guarantee of 1-PRV when n � m2. Does this mean that the threshold approach we take here essentially
wastes the second query per agent as long as n is sufficiently large? Our analysis seems to suggest so as
well. In fact, for each range mentioned in the corollary it is not hard to construct instances showing that the
analysis of the mechanism is asymptotically tight. Below we provide such a construction for the case where
n ≤ m2, which further illustrates that the suggested threshold of Corollary 3 is asymptotically optimal, even
when one assumes normalized valuation functions.

Theorem 7. For n = o(m2), the best threshold for τ-TRV is τ = Θ(√n), even for unit-sum valuation
functions, leading to Θ(√n) distortion.

Proof. We assume that τ ≤ n, since otherwise the distortion of τ-TRV is m, while the distortion of
√

n-TRV
is
√

n ≤ m. We first consider the case where m ≤ n, and define the following two (families of) instances.

First instance:

• Besides alternative x, every other alternative appears first in roughly n
m−1 rankings (either in

⌊
n

m−1
⌋

or
⌈

n
m−1

⌉
rankings each);

• There are r = min{m − 1,n/τ} alternatives {y1, ..., yr } who appear second in roughly n/r rankings
each;

• Alternative x appears third in every ranking;

• The remaining ordinal profile is filled arbitrarily.

18



The valuation profile is such that the alternatives in the first three positions get a value of 1/3 for each of
their appearances in those positions. Hence, each alternative yj for j ∈ [r] has social welfare 1

3 (n/m + n/r),
while alternative x has social welfare n/3. Notice that n/r ≥ τ; indeed, when r = n/τ this is trivial, and
when r = m−1 we have m−1 < n/τ ⇒ τ < n/(m−1) = n/r . So, by definition, τ-TRV will query all agents
at the second position and will therefore select some alternative yj , yielding distortion D = mr

m+r . Unless
τ = ω(n/m), there is an infinite subsequence of pairs of values for n and m for which mr

m+r = Θ(m) = ω(
√

n)).
This would imply a worst case distortion D = ω(√n) in general. Since

√
n-TRV already has a strictly better

distortion guarantee than that, and we are looking for an optimal threshold, we may assume that τ = ω(n/m).
Therefore, subject to the possible optimal choices of τ, this first instance forces τ-TRV to have distortion
D ≥ m n

τ

m+ n
τ
= Θ(n/τ).

Second instance:

• Besides alternatives x, y and z, every other alternative appears first in roughly n
m−3 rankings;

• Alternative x appears second in τ − 1 rankings;

• Alternative y appears second in n − τ + 1 rankings;

• Alternative z appears third in every ranking;

• The remaining ordinal profile is filled arbitrarily.

Let µ = max{n,10m}. The alternatives at the first position get a value of 1
2 in the rankings where x is

second, and 1 − m−1
µ otherwise. Alternative x gets a value of 1

2 − m−2
µ for every appearances at a second

position. The alternatives in the remaining positions equally share the remaining value (out of total value 1
per agent). That is, they all get a value of 1

µ . By definition, τ-TRV will query for y at the second position
(if n − τ + 1 ≥ τ) or for z at the third position (if n − τ + 1 < τ). At this point, the revealed welfare of x
is 0, while the revealed welfare of any other alternative is positive, and so the mechanism will elect some
alternative w , x. Observe that the social welfare of w is no more than 1 + n−1

µ ≤ 2 in any case, while the
social welfare of x is at least (12 − m−2

µ )(τ − 1) ≥ 2
5 (τ − 1). Therefore, this second instance forces τ-TRV to

have distortion D ≥ 1
5 (τ − 1) = Θ(τ).

To balance the distortion between these two instances, we must set τ ≈
√

5n = Θ(√n).
For the case m > n, only n alternatives are relevant. Therefore, we can construct the above instances

for m′ = n and then add m − n dummy alternatives at the end of each ranking such that all agents have zero
value for them. Again, we get that the best threshold for τ-TRV is τ = Θ(√n).

6 Constant Distortion Using Only Comparison Queries

A straightforward, yet crucial, observation is that mechanism k-ARV can actually be implemented using
just one value query. We can ask the value of each agent for her favorite alternative, and then ask O(k log m)
comparison queries that guide the binary search in computing the maximal acceptable sets. Hence, log m-
ARV achieves constant distortion using only one value query and O(log2 m) comparison queries.

Therefore, it is natural to ask whether we can avoid this single value query entirely, and rely only on
comparison queries instead. Surprisingly, for unit-sum valuation functions, we show that this is indeed
possible at no extra cost! More precisely, we show that we can approximate the value that an agent has for
her favorite alternative within a factor of 1 ± ε, using O(log2 m) comparison queries. Note that this is the
first time that we assume the unit-sum normalization.

19



For the sake of readability, we focus on a single agent and write u j for her value for the alternative that
she ranks at position j ∈ [m]. We take the same approach as in the proof of Theorem 4 in order to build an
approximate valuation profile. Since everything in this profile is expressed in terms of the largest value u1,
we utilize the unit-sum assumption to approximately solve for u1.

Theorem 8. For any constant ε ≥ 1/m, it is possible to compute some u∗ such that (1 − ε) u∗ ≤ u1 ≤
(1 + ε) u∗, using O(log2 m) comparison queries.

Proof. Let κ = dlog1+ε m2e = Θ(log m). We define κ thresholds λ` = (1 + ε)` for ` ∈ [κ]; observe that
λi = λi−1 · λ1. For each ` ∈ [κ], we perform a binary search using Θ(log m) comparison queries to find the
maximum integer ξ` such that uξ` ≥ u1

λ`
; we also set ξ0 = 1 and ξκ+1 = m. Hence, we have that

u j ∈

[
u1
λ`
, u1
λ`−1

)
, for each j ∈ (ξ`−1, ξ`], ` ∈ [κ][

0, u1
λκ

)
, for each j ∈ (ξκ, ξκ+1] .

(11)

To simplify the notation, let gi = ξi − ξi−1 for i ∈ [κ + 1]. Note that gi ≤ m.
By the unit-sum normalization we have

1 =
m∑
j=1

u j =

κ+1∑̀
=1

∑
j∈(ξ`−1,ξ` ]

u j .

Using (11), we can now upper- and lower-bound the above expression. We start with the upper bound:

1 =
κ+1∑̀
=1

∑
j∈(ξ`−1,ξ` ]

u j ≤
κ+1∑̀
=1

∑
j∈(ξ`−1,ξ` ]

u1
λ`−1

=

κ+1∑̀
=1

u1
g`

λ`−1
= u1

κ∑̀
=1

g`

λ`−1
+ u1

gκ+1
λκ

.

By the definition of λκ we have that gκ+1
λκ
≤ 1

m ≤ ε and hence,

u1 ≥ (1 − ε) ·
(
κ∑̀
=1

g`

λ`−1

)−1

.

Similarly, by using the lower bounds in (11), we have that

1 =
κ+1∑̀
=1

∑
j∈(ξ`−1,ξ` ]

u j ≥
κ∑̀
=1

∑
j∈(ξ`−1,ξ` ]

u1
λ`
=

κ∑̀
=1

u1
g`

λ`
= u1

κ∑̀
=1

g`

λ`−1
· 1
λ1
=

u1
1 + ε

κ∑̀
=1

g`

λ`−1
.

or, equivalently,

u1 ≤ (1 + ε) ·
(
κ∑̀
=1

g`

λ`−1

)−1

.

Hence, the theorem follows by setting u∗ =
(∑κ

`=1
g`
λ`−1

)−1
. Indeed, to compute u∗ only the integers ξ` ,

` ∈ [κ] are used. Those, in turn, are computed via Θ(log m) binary searches. Hence, we only need O(log2 m)
comparison queries.
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By inspecting the proof of Theorem 4, it is easy to see that knowing the approximate valuation profile ṽ
exactly or perturbed within a multiplicative constant factor, makes no difference asymptotically. Therefore,
we augment k-ARV with a pre-processing step where each maximum value v∗i is approximated according
to Theorem 8 above, and these approximations are used in line 2 of the mechanism. For k = log m, this new
mechanism, which we call modified (log m)-ARV, achieves the same distortion guarantee and asks the same
number of queries (asymptotically) with (log m)-ARV.

Corollary 4. Modified (log m)-ARV achieves distortion O(1) using O(log2 m) comparison queries per agent.

7 Lower Bounds

We now present general lower bounds on the distortion which depend on the number of value queries the
mechanisms are allowed to ask per agent, but are unconditional on how and where they decide to ask these
queries. In particular, we show that the distortion of any mechanism that makes one value query per agent
is Ω(m) when the agents have unrestricted valuation functions, and Ω(√m) when the agents have unit-sum
valuation functions. Moreover, for mechanisms that are allowed to make λ queries per agents, we show a
weaker lower bound of Ω

(
1
λ+1 · m

1
2(λ+1)

)
for unrestricted valuation functions. This shows that in order to

achieve constant distortion, we need to necessarily make more than O
(

logm
log logm

)
queries per agent. Closing

the gap between this lower bound and the upper bound of O(log2 m) queries that the mechanism O(log m)-
ARV from Section 4 requires in order to achieve constant distortion is one of the most interesting open
problems that our work leaves open; see the discussion in Section 8.

Before we proceed with the presentation of the results of this section, let us give a very brief roadmap
of the proofs. The high-level idea is similar to the that used in the proofs of lower bounds presented in
previous sections (like Theorems 2 and 3 in Section 3), but the particular constructions and arguments
exploited in the proofs below are more delicate; this is an aftermath of the fact that we aim to lower-bound
the distortion of any mechanism. To this end, assuming an arbitrary mechanism (that is allowed to make a
specific number of queries per agent), we first define a single ordinal preference profile which is given as
input to the mechanism, and also carefully define the cardinal information that is revealed from all possible
queries of the mechanism. This cardinal information is such that it is always possible to complete the
valuation profile in a way that allows us to define the social welfare of the optimal alternative to be much
higher than that of the alternative selected by the mechanism. Since we do not know how the mechanism
makes its selection, we need to take into account every possible scenario, and therefore define many different
valuation profiles that can be used in different cases.

To simplify our discussion when we deal with unrestricted valuation functions in this section, we assume
that the values are normalized and lie in the interval [0,1]. This is without loss of generality since we make
no other assumptions on the way the mechanism behave, other than that they are allowed to ask a particular
number of queries.

7.1 One-Query Mechanisms with Unrestricted Valuations

We start by showing that, for unrestricted valuations, any mechanism that makes one value query per agent
has linear distortion. This also shows that the mechanism 1-PRV from Section 3 is the best possible mecha-
nism among such mechanisms.

Theorem 9. For unrestricted valuation functions, the distortion of any mechanism that uses one value query
per agent is Ω(m).
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Proof. LetM be an arbitrary mechanism that makes one value query per agent, and consider an instance
with m ≥ 4 alternatives and n = m − 2 agents, where m is an even number. We denote the set of alternatives
as A = {a1, ...,am−2, x, y}. Using the notation [z,w] to denote the fact that alternatives z and w are ordered
arbitrarily in the ranking of an agent, we define the ordinal profile as follows:

• The ranking of agent i ≤ n
2 is ai �i x �i y �i [a1, ...,ai−1,ai+1, ...,am−2];

• The ranking of agent i > n
2 is ai �i y �i x �i [a1, ...,ai−1,ai+1, ...,am−2].

Depending on the positions at whichM queries, we reveal the following cardinal information:

• For every query at a first position we reveal a value of m−1;

• For every query at a second or third position we reveal a value of m−2;

• For any other position we reveal a value of 0.

We claim thatM must query all agents at the first position, as otherwise its distortion is Ω(m). Assume
otherwise thatM does not query agent 1 her value for alternative a1; this is without loss of generality due to
symmetry. We now define two valuation profiles v1 and v2, which are both consistent to the ordinal profile
and the revealed information, but differ on the value that agent 1 has for alternative a1. In particular:

• In both v1 and v2, every agent i ≥ 2 has value m−1 for alternative ai, m−2 for alternatives x and y, and
0 for everyone else;

• In both v1 and v2, agent 1 has value m−2 for alternatives x and y, and 0 for every alternative ai for
i ≥ 2. The value of agent 1 for alternative a1 is m−2 in v1, and 1 in v2.

These two profiles are utilized in the following way: IfM selects a1, then the valuation profile is set to be
v1, while ifM selects some other alternative, then the valuation profile is set to be v2. Now, observe that

SW(ai |v1) = SW(ai |v2) = m−1 for every i ≥ 2,

and

SW(x |v1) = SW(x |v2) = SW(y |v1) = SW(y |v2) = (m − 2) · m−2 ≤ m−1.

IfM selects a1, the social welfare of a1 is SW(a1 |v1) = m−2 and therefore any alternative ai for i ≥ 2 is
optimal, yielding distortion equal to m. Similarly, whenM selects some alternative different than a1, then
a1 is optimal with social welfare SW(a1 |v2) = 1, yielding distortion at least m.

Hence,M must query all agents at the first position in order to learn a value of m−1 for every alternative
ai, i ∈ [n]. We now define three valuation profiles v3, v4 and v5, which are consistent to the ordinal profile
and this revealed information, but differ on the values that the agents have for alternatives x and y; in
particular, v4 and v5 are symmetric.

• In all three profiles, every agent i ∈ [n] has value m−1 for alternative ai, and 0 for any alternative aj

such that j , i;

• In v3, all agents have value m−1 for alternatives x and y;

• In v4, all agents have value m−2 for alternative y, every agent i > n/2 (who ranks x after y) has value
m−2 for x, and every agent i ≤ n/2 (who ranks x before y) has value m−1 for x.
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• In v5, all agents have value m−2 for alternative x, every agent i ≤ n/2 (who ranks y after x) has value
m−2 for y, and every agent i > n/2 (who ranks y before x) has value m−1 for y.

If M selects some alternative ai for i ∈ [n], then the valuation profile is set to be v3, while if M selects
alternative y or x, then the valuation profile is set to be v4 or v5, respectively. Given this, observe that ifM
decides to select alternative ai for some i ∈ [n], then since

SW(ai |v3) = SW(ai |v4) = SW(ai |v5) = m−1 for every i ∈ [n],

and

SW(x |v3) = SW(y |v3) = (m − 2) · m−1 = 1 − 2m−1,

the distortion is at least m − 2. Similarly, ifM decides to select alternative y, then since

SW(y |v4) = (m − 2)m−2 ≤ m−1

and

SW(x |v4) =
(m

2
− 1

)
m−1 +

(m
2
− 1

)
m−2 =

1
2

(
1 − m−1 − 2m−2

)
,

the distortion is at least 1
2 (m − 1 − 2m−1) ≥ m

4 for any m ≥ 4; the case whereM selects x is symmetric and
follows by v5. In any case,M has distortion Ω(m) and the theorem follows.

7.2 General Mechanisms with Unrestricted Valuations

We will now focus on mechanisms that make a number λ ≥ 1 of queries per agent, and will show a weaker
lower bound on the distortion which depends on λ.

Theorem 10. For unrestricted valuation functions, the distortion of any mechanism that uses λ ≥ 1 value
queries per agent is Ω

(
1
λ+1 · m

1
2(λ+1)

)
.

Proof. Our instance consists of m ≥ λ alternatives and n = m agents. We partition the set A of alternatives
into the following (λ + 2) sets:

• Aj with |Aj | = m1− j
λ+1 , for every j ∈ [λ];

• X with |X | = 2;

• Y with |Y | = m − 2 −∑λ
j=1 m1− j

λ+1 .

We will now define the ordinal profile. Let X = {x1, x2} and denote by [z,w] the fact that alternatives z and
w are ordered arbitrarily in the ranking of an agent. For every agent i there exists an alternative ai j ∈ Aj for
each j ∈ [λ] such that:

• The ranking of agent i ≤ m
2 is ai1 �i ... �i aiλ �i x1 �i x2 �i [Y ] �i [∪j∈[λ]Aj \ {ai j}];

• The ranking of agent i > m
2 is ai1 �i ... �i aiλ �i x2 �i x1 �i [Y ] �i [∪j∈[λ]Aj \ {ai j}];
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In words, every agent i ranks some alternative ai j ∈ Aj at position j ∈ [λ], followed by the two alternatives
of X = {x1, x2} at positions (λ + 1) and (λ + 2), followed by all alternatives of Y (in an arbitrary order),
followed by the alternatives of ∪j∈[λ]Aj \ {ai j} (in an arbitrary order). Observe that the alternatives of Y are
all dominated by the alternatives of X in the sense that both x1 and x2 have at least as much social welfare
as any alternative of Y . The choices as to how the alternatives of ∪j∈[λ]Aj are distributed in the rankings of
the agents are such that:

• Each alternative of Aj appears m
j
λ+1 times at position j ∈ [λ];

• For any j ∈ [λ − 1] and pair of agents i, i′ such that ai j = ai′ j , it holds that ai, j+1 = ai′, j+1.

Hence, the agents with the same favorite alternative have exactly the same ranking. To simplify our discus-
sion in what follows, we refer to the alternatives in Y and ∪j∈[λ]Aj \ {ai j} as the tail alternatives of agent i.
Let Tj(z) be the set of the m

j
λ+1 agents that rank alternative z ∈ Aj at position j ∈ [λ]. Figure 2 depicts the

ordinal profile of our instance for λ = 2.
LetM be an arbitrary mechanism that makes λ value queries per agent. Naturally, we assume thatM

does not elect any dominated alternative from Y . The cardinal information that is revealed due to the queries
ofM is as follows:

• Each of the first λ
λ+1 ·m

j
λ+1 queries ofM for any alternative z ∈ Aj , j ∈ [λ] reveals a value of m−

j+1/2
λ+1 ,

while each of the remaining 1
λ+1 · m

j
λ+1 queries ofM for z reveals a value of m−

j
λ+1 .

• Every query ofM for an alternative of X reveals a value of m−1.

• Every query ofM for a tail alternative reveals zero value.

To simplify our notation in the rest of the proof, let δi j be the indicator variable:

δi j =


1, ifM asks agent i for ai j and has previously asked

strictly less than λ
λ+1 · m

1
λ+1 other agents of Tj(ai j) for ai j

0, otherwise.

Now, assume towards a contradiction thatM has distortion D(M) < Ω
(

1
λ+1 · m

1
2(λ+1)

)
. Using the next

two claims, we will show by induction that M must query a large proportion of the agents at the first λ
positions, since otherwise the distortion ofM would be Ω

(
1
λ+1 · m

1
2(λ+1)

)
.

Claim 2. The mechanismM must ask at the first position strictly more than λ
λ+1 ·m

1
λ+1 of the agents in T1(z)

for every alternative z ∈ A1.

Claim 3. Given that for every alternative z ∈ Aj , j ∈ [λ − 1] the mechanismM asks at the first j positions

strictly more than
(
1 − j

λ+1

)
·m j

λ+1 of the agents in Tj(z),M must ask at the first j +1 positions strictly more

than
(
1 − j+1

λ+1

)
· m j+1

λ+1 of the agents in Tj+1(w) for every alternative w ∈ Aj+1.

By Claims 2 and 3,M must ask at the first λ positions strictly more than (1− λ
λ+1 ) ·m

λ
λ+1 = 1

λ+1 ·m
λ
λ+1 of

the agents in Tλ(z) for every alternative z ∈ Aλ. Consequently, since Aλ consists of exactly m
1
λ+1 alternatives,

there are at least m
1
λ+1 · 1

λ+1 · m
λ
λ+1 = 1

λ+1 · m agents that are not queried at positions (λ + 1) and (λ + 2) for
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a1

a2

···

am1/3

am1/3+1

am1/3+2

···

a2m1/3

am2/3−m1/3+1

am2/3−m1/3+2

···

am2/3

b1

b2

bm1/3

x1 x2

x2 x1

tail alternatives

···

m1/3

m2/3

m
2

Figure 2: An example of the instance used in the proof of Theorem 10 for λ = 2; for convenience, we denote
here the alternatives of A1 and A2 as A1 = {a1, ...,am2/3} and A2 = {b1, ..., bm1/3}.
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the alternatives of X = {x1, x2}. Let S be the set of these 1
λ+1 · m agents; observe that half of them rank x1

ahead of x2 and half of them rank x1 below x2, which follows by the fact that S includes the same number
of agents per alternative of Aλ and the definition of the ordinal profile. Further, we define two more sets of
agents: S12 = {i ∈ S : i ≤ m

2 } and S21 = S \ S12. Observe that all agents of S12 rank alternative x1 ahead of
x2, and all agents of S21 rank x2 ahead of x1.

Now, we define three valuation profiles v1, v2 and v3, which are consistent to the ordinal profile and the
cardinal information revealed by the queries ofM, but differ on the values that the agents in S have for the
alternatives in X; in particular, v2 and v3 are symmetric.

• In all three profiles, every agent i ∈ [m] has value δi j · m−
j+1/2
λ+1 + (1 − δi j) · m−

j
λ+1 for the alternative

ai j ∈ Aj that she ranks at position j ∈ [λ], and zero value for her tail alternatives;

• In all three profiles, every agent i < S has value m−1 for both x1 and x2;

• In v1, every agent i ∈ S has value m−
λ+1/2
λ+1 for both x1 and x2;

• In v2, every agent i ∈ S12 has value m−1 for both x1 and x2, while every agent i ∈ S21 has value m−1

for x1 and value m−
λ+1/2
λ+1 for x2.

• In v3, every agent i ∈ S21 has value m−1 for both x1 and x2, while every agent i ∈ S12 has value m−1

for x2 and value m−
λ+1/2
λ+1 for x1.

Next, we compute the social welfare of each alternative for the different valuation profiles:

• The social welfare of every alternative z ∈ Y is

SW(z |v1) = SW(z |v2) = SW(z |v3) = 0.

• The social welfare of every alternative z ∈ ∪j∈[λ]Aj is

SW(z |v1) = SW(z |v2) = SW(z |v3) = λ

λ + 1
· m j

λ+1 · m− j+1/2
λ+1 +

1
λ + 1

· m j
λ+1 · m− j

λ+1

=
λ

λ + 1
· m− 1

2(λ+1) +
1

λ + 1
≤ 1.

• The social welfare of x1 is

SW(x1 |v1) ≥ 1
λ + 1

· m · m− λ+1/2
λ+1 =

1
λ + 1

· m 1
2(λ+1) ,

SW(x1 |v2) = m · m−1 = 1,

SW(x1 |v3) ≥ 1
2
· 1
λ + 1

· m · m− λ+1/2
λ+1 =

1
2(λ + 1) · m

1
2(λ+1) .

• The social welfare of x2 is

SW(x2 |v1) ≥ 1
λ + 1

· m · m− λ+1/2
λ+1 =

1
λ + 1

· m 1
2(λ+1) ,

SW(x2 |v2) ≥ 1
2
· 1
λ + 1

m · m− λ+1/2
λ+1 =

1
2(λ + 1) · m

1
2(λ+1) ,

SW(x2 |v3) = m · m−1 = 1.
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Depending on the choices of the mechanismM, we set the valuation profile to be one of v1, v2 and v3
so that the distortion is as high as possible. In particular, we have:

• If M selects any alternative z ∈ ∪j∈[λ]Aj , we set the valuation profile to be v1. Hence, the social
welfare of the winner z is at most 1, while any alternative of X is optimal with social welfare at least

1
λ+1 · m

1
2(λ+1) , yielding distortion at least 1

λ+1 · m
1

2(λ+1) .

• If M selects alternative x1, we set the valuation profile to be v2. Hence, the social welfare of the
winner x1 is exactly 1, while x2 is the optimal alternative with social welfare at least 1

2(λ+1) · m
1

2(λ+1) ,

yielding distortion at least 1
2(λ+1) · m

1
2(λ+1) .

• IfM selects alternative x2, we set the valuation profile to be v3, which is symmetric to the previous
case and again yields distortion at least 1

2(λ+1) · m
1

2(λ+1) .

Therefore, the distortion ofM is Ω
(

1
λ+1 · m

1
2(λ+1)

)
and the proof of the theorem is now complete; the proofs

of Claims 2 and 3 can be found in the appendix.

Using Theorem 10, we can show several lower bounds on the distortion of any mechanism, depending
on the number of queries that it makes per agent. In particular, we have the following statement.

Corollary 5. For unrestricted valuation functions, the distortion of any mechanismM that uses λ queries
per agent is

D(M) =

Ω

(
m

1
2(λ+1)

)
, for any constant λ ≥ 1

Ω (log log m) , for λ = O
(

logm
log logm

)
.

7.3 One-Query Mechanisms with Unit-Sum Valuations

Next, we turn our attention to unit-sum valuation functions and mechanisms that are allowed to make only
one value query per agent. For this case, we are able to show a weaker lower bound of Ω(√m), which
indicates (but does not prove) some separation between unrestricted and unit-sum valuation functions.

Theorem 11. For unit-sum valuation functions, the distortion of any mechanism that uses only one direct
value query per agent is Ω(√m).
Proof. Consider an instance with m ≥ 4 alternatives and n =

√
m agents. We partition the set A of alterna-

tives into the following four sets:

• B = {b1, ..., b√m} with |B| = √m;

• C = {c1, c2} with |C | = 2;

• D = {d1, ..., d√m−3} with |D | = √m − 3;

• E = {e1, ..., em−2
√
m+1} with |E | = m − 2

√
m + 1.

Using the notation [z,w] to denote the fact that alternatives z and w are ordered arbitrarily in the ranking of
an agent, we define the following ordinal profile:
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• The ranking of agent i ≤ n
2 is bi �i c1 �i c2 �i [D] �i [E] �i [B \ {bi}]

• The ranking of agent i > n
2 is bi �i c2 �i c1 �i [D] �i [E] �i [B \ {bi}]

Observe that the alternatives of D ∪ E are all dominated by alternatives c1 and c2 in the sense that electing
c1 or c2 always yields social welfare that is at least as much as the social welfare of any alternative in D∪E .
We refer to the alternatives of E ∪ B \ {bi} as the tail alternatives of agent i.

LetM be any mechanism that makes one query per agent. Naturally, we assume thatM does not elect
any dominated alternative from D∪E . The possible queries ofM reveal the following cardinal information:

• A query for the favorite alternative of an agent (at the first position) reveals a value of 1√
m

;

• A query for an alternative in C ∪ D reveals a value of 1
m ;

• Any other query (for a tail alternative) reveals zero value.

We define the following sets of agents, depending on the function ofM:

• S1 is the set of agents queried at the first position (for their favorite alternative);

• SC is the set of agents queried for some alternative in C;

• SD is the set of agents queried for some alternative in D;

• S> is the set of agents queried for some tail alternative.

Next, we distinguish between three cases, depending on the alternative thatM elects.

Case I:M selects alternative c1 (the case of c2 is symmetric)
If |S1 | < n, we define the following valuation profile v:

• For every agent i ∈ SC , we set vi,bi = 1 − 2
m and vi,c1 = vi,c2 =

1
m ; the value for all other alternatives

is zero.

• For every agent i ∈ SD , we set vi,bi = 1 −
√
m−1
m and vi,c1 = vi,c2 = vi,d j =

1
m for j ∈ [√m − 3]; the

value for all other alternatives is zero.

• For every agent i ∈ S>, we set vi,bi = 1; the value for all other alternatives is zero.

• For every agent i ∈ S1, we set vi,bi =
1√
m

, and split the remaining value of 1 − 1√
m

equally among all

other m − 1 alternatives so that for each of them the value of agent i is
√
m−1√

m(m−1) .

Hence, alternative c1 has social welfare

SW(c1 |v) =
(
|SC | + |SD |

)
· 1

m
+ |S> | · 0 + |S1 | ·

√
m − 1√

m(m − 1)
≤

(
|S1 | + |SC | + |SD |

)
· 1

m

≤ 1√
m
,
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where the first inequality follows since
√
m−1√

m(m−1) ≤ 1
m ⇔

√
m ≤ m, and the second follows by the fact that

|S1 | + |SC | + |SD | ≤ n =
√

m. Since |S1 | < n, there exists an agent i∗ ∈ SC ∪ SD ∪ S> such that her favorite
alternative bi∗ has social welfare

SW(bi∗ |v) ≥ 1 −
√

m − 1
m

≥ 1 − 1√
m
.

As a result, the distortion is at least
√

m − 1.
If |S1 | = n, we define the following valuation profile v:

• For every agent i ≤ n
2 , we set vi,bi =

1√
m

, and split the remaining value of 1 − 1√
m

equally among all

other m − 1 alternatives so that for each of them the value of agent i is
√
m−1√

m(m−1) .

• For every agent i > n
2 , we set vi,bi = vi,c2 =

1√
m

, and split the remaining value of 1 − 2√
m

equally

among all other m − 2 alternatives so that for each of them the value of agent i is
√
m−2√

m(m−2) .

Hence, alternative c1 has social welfare

SW(c1 |v) = n
2
·
( √

m − 1√
m(m − 1) +

√
m − 2√

m(m − 2)

)
≤ n

2
· 2
√

m − 3√
m(m − 2) .

On the other hand, alternative c2 has social welfare

SW(c2 |v) = n
2
·
( √

m − 1√
m(m − 1) +

1√
m

)
=

n
2
· m +

√
m − 2√

m(m − 1) .

Consequently, the distortion is at least

SW(c2 |v)
SW(c1 |v) ≥

m − 2
m − 1

· m +
√

m − 2
2
√

m − 3
≥ 1

2
√

m,

where the last inequality holds for any m ≥ 3.

Case II: |S1 | ≥ 1 andM selects some alternative bi∗ for i∗ ∈ S1.
If |S1 | < n, we define the following valuation profile v:

• For every agent i ∈ SC , we set vi,bi = 1 − 2
m and vi,c1 = vi,c2 =

1
m ; the value for all other alternatives

is zero.

• For every agent i ∈ SD , we set vi,bi = 1 − 1√
m
+ 1

m and vi,c1 = vi,c2 = vi,d j =
1
m for j ∈ [√m − 3]; the

value for all other alternatives is zero.

• For every i ∈ S>, we set vi,bi = 1; the value for all other alternatives is zero.
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• For every i ∈ S1, we set vi,bi =
1√
m

, and split the remaining value of 1− 1√
m

equally among the m−√m
alternatives of C ∪ D ∪ E , while the value for the alternatives of B \ {bi} is zero.

Hence, the social welfare of alternative bi∗ is

SW(bi∗ |v) = 1√
m
.

Since |S1 | < n, there exists an agent i ∈ SC ∪ SD ∪ S> such that alternative bi has social welfare

SW(bi |v) ≥ 1 − 1√
m
+

1
m
≥ 1 − 1√

m
,

and therefore the distortion is at least
√

m − 1.
If |S1 | = n, we define the following valuation profile v:

• For every agent i ∈ [n], we set vi,bi = vi,c1 = vi,c2 =
1√
m

, and split the remaining value of 1 − 3√
m

equally among the m − √m − 2 alternatives of D ∪ E; the value for the alternatives of B \ {bi} is
zero. This is a valid valuation definition since the value for each alternative in D∪E is

√
m−3√

m(m−√m−2) ≤
1√
m
⇔ (√m − 1)2 ≥ 0.

Hence, alternative bi∗ has social welfare

SW(bi∗ |v) = 1√
m
.

But now, the social welfare of c1 and c2 is equal to

SW(c1 |v) = SW(c2 |v) = n
1√
m
= 1,

yielding distortion that is at least
√

m.

Case III: |SC | + |SD | + |S> | ≥ 1 andM selects some alternative bi∗ for i∗ ∈ SC ∪ SD ∪ S>
We define the following valuation profile v:

• If i∗ ∈ SC ∪ SD , we set vi∗ j = 1
m for every alternative j ∈ A. If i∗ ∈ S>, we split the total value of 1

equally among the m − √m + 1 alternatives in {bi∗} ∪ C ∪ D ∪ E so that the value of agent i for each
such alternative is 1

m−√m+1 ≤ 1√
m

.

• For every agent i ∈ SC \ {i∗}, we set vi,bi = 1 − 2
m and vi,c1 = vi,c2 =

1
m ; the value for all other

alternatives is zero.

• For every agent i ∈ SD \ {i∗}, we set vi,bi = 1− 1√
m
+ 1

m and vi,c1 = vi,c2 = vi,d j =
1
m for j ∈ [√m−3];

the value for all other alternatives is zero.

• For every agent i ∈ S> \ {i∗}, we set vi,bi = 1; the value for all other alternatives is zero.
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• For every agent i ∈ S1, we set vi,bi = vi,c1 = vi,c2 =
1√
m

, and split the remaining value of 1 − 3√
m

equally among the m − √m − 2 alternatives in D ∪ E; the value of agent i for the alternatives of
B \ {bi} is zero. This is a valid valuation definition since the value for each alternative in D ∪ E is

1− 3√
m

m−2
√
m+1 ≤ 1√

m
⇔ (√m − 1)2 ≥ 0.

Hence, in any case, the social welfare of alternative bi∗ is

SW(bi∗ |v) ≤ 1√
m
.

We now distinguish between a couple more cases:

• If |SC |+ |SD |+ |S> | ≥ 2, then there exists an agent i ∈ SC ∪ SD ∪ S> \ {i∗} such that the social welfare
of alternative bi is

SW(bi |v) ≥ 1 − 1√
m
+

1
m
≥ 1 − 1√

m
,

yielding distortion at least
√

m − 1.

• If |SC | + |SD | + |S> | = 1, then since |S1 | = n − 1 =
√

m − 1, alternatives c1 and c2 both have social
welfare

SW(c1 |v) = SW(c2 |v) ≥ (
√

m − 1) 1√
m
= 1 − 1√

m

and the distortion is at least
√

m − 1.

The proof is now complete.

8 Conclusions and Directions for Future Research

In this paper, we studied mechanisms for general single winner elections. In particular, we explored the
potential of improving the distortion of deterministic ordinal mechanisms by making a limited number of
cardinal queries per agent. On this front, we obtained a definitive positive answer. Among other positive re-
sults, we showed that it is possible to achieve constant distortion by making O(log2m) value or comparison
queries per agent, while only two value queries are enough to guarantee distortion O(√m) in the fundamen-
tal case of n = Θ(m), thus outperforming the best known randomized ordinal mechanism of Boutilier et al.
[2015]. Quite interestingly, our positive results for value queries hold without any normalization assump-
tions, which makes them even stronger.

We complemented these results by showing (nearly) tight lower bounds for many interesting cases.
For one-query mechanisms we showed a linear lower bound for unrestricted valuation functions and a lower
bound ofΩ(√m) for unit-sum valuations. Further, for mechanisms that make O

(
logm

log logm

)
queries we showed

a superconstant lower bound for unrestricted valuation functions.
Possibly the most obvious open problem is to fill in the gaps between our upper and lower bounds. To

this end, we make the following two conjectures.

1-Query Conjecture. There exists a mechanism that achieves a distortion of O(√m) using 1 value query
per agent, for unit-sum valuation functions.
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log m-Queries Conjecture. There exists a mechanism that achieves a constant distortion, using O(log m)
value queries per agent, for unit-sum valuation functions.

We consider settling these two conjectures the most interesting problems left open in our work. Since
our upper bounds for value queries do not make use of the unit-sum normalization, it is conceivable that
some clever use of that extra information could possibly lead to better trade-offs.

A natural direction for future work is to consider randomization. Intriguingly, one could consider two
different levels of randomization. The first level consists of mechanisms that decide randomly what queries
to make to the agents, yet the winning alternative is chosen deterministically. The second level consists
of mechanisms that use randomization for both querying and making the final decision. Both of these two
classes of randomized mechanisms are very natural and may lead to similar distortion bounds but potentially
using fewer queries.

Our work takes a first step towards exploring how powerful ordinal mechanisms with limited access to
cardinal information can actually be. Of course, the same idea can be applied to many different contexts,
such as participatory budgeting, multi-winner elections, or the metric distortion setting, which has been
extensively studied over the past years. As we mentioned in the introduction, Abramowitz et al. [2019]
already take a step in this direction in the metric setting.
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A Missing Proofs from Subsection 7.2

Proof of Claim 2

Assume towards a contradiction that there exists an alternative z∗ ∈ A1 such that the mechanismM asks at
most λ

λ+1 · m
1
λ+1 agents of T1(z∗) at the first position, andM has distortion D(M) < Ω

(
1
λ+1 · m

1
2(λ+1)

)
. Let

S be the set of the at least 1
λ+1 · m

1
λ+1 agents of T1(z∗) that are not queried byM at the first position. Hence,

we have that δi1 = 1 for every agent i < S.
We now define two valuation profiles v1 and v2, which are consistent to the ordinal profile and any

information revealed by the queries ofM, but differ on the value that the agents of S have for alternative z∗:

• In both v1 and v2, every agent i < S has value δi j ·m−
j+1/2
λ+1 + (1−δi j) ·m−

j
λ+1 for the alternative ai j ∈ Aj

that she ranks at position j ∈ [λ], value m−1 for alternatives x1 and x2, and zero value for her tail
alternatives.

• In both v1 and v2, every agent i ∈ S has value δi j ·m−
j+1/2
λ+1 + (1−δi j) ·m−

j
λ+1 for the alternative ai j ∈ Aj

that she ranks at position j ∈ [λ] \ {1}, value m−1 for alternatives x1 and x2, and zero value for her tail
alternatives.

• In v1, every agent i ∈ S has value m−
3/2
λ+1 for z∗.

• In v2, every agent i ∈ S has value 1 for z∗.

Given the definition of these two valuation profiles, it is easy to compute the social welfare of the alternatives:

• The social welfare of every alternative z ∈ Y is

SW(z |v1) = SW(z |v2) = 0.

• The social welfare of alternatives x1 and x2 is

SW(x1 |v1) = SW(x1 |v2) = SW(x2 |v1) = SW(x2 |v2) = m · m−1 = 1.

• The social welfare of any alternative z ∈ ∪j∈[λ]Aj \ {z∗} is

SW(z |v1) = SW(z |v2) = λ

λ + 1
· m j

λ+1 · m− j+1/2
λ+1 +

1
λ + 1

· m j
λ+1 · m− j

λ+1

=
λ

λ + 1
· m− 1

2(λ+1) +
1

λ + 1
≤ 1.

• The social welfare of alternative z∗ is

SW(z∗ |v1) = λ

λ + 1
· m 1

λ+1 · m− 1+1/2
λ+1 +

1
λ + 1

· m 1
λ+1 · m− 3/2

λ+1 = m−
1

2(λ+1) ,

SW(z∗ |v2) = λ

λ + 1
· m 1

λ+1 · m− 1+1/2
λ+1 +

1
λ + 1

· m 1
λ+1 · 1 = λ

λ + 1
· m− 1

2(λ+1) +
1

λ + 1
· m 1

λ+1 .

Depending on the choices of the mechanismM, we set the valuation profile to be either v1 or v2 so that
the distortion is as high as possible. In particular, we have:
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• If M selects alternative z∗, we set the valuation profile to be v1. Hence, the social welfare of the
winner z∗ is m−

1
2 · 1
λ+1 , while any alternative of X is optimal with social welfare 1, yielding distortion

m
1

2(λ+1) .

• IfM selects some alternative z ∈ X ∪j∈[λ] Aj \ {z∗}, we set the valuation profile to be v2. Hence, the
social welfare of the winner z is at most 1, while alternative z∗ is optimal with social welfare at least

1
λ+1 · m

1
λ+1 , yielding distortion at least 1

λ+1 · m
1
λ+1 .

In any case, the distortion is Ω
(

1
λ+1 · m

1
2(λ+1)

)
and the proof of the claim follows.

Proof of Claim 3

For every alternative w ∈ Aj+1, let Sw ⊆ Tj+1(w) be the set of agents that rank w at position ( j + 1) and
are queried byM at the first j positions. By the definition of the ordinal profile, the set Tj+1(w) consists
of m

j+1
λ+1 agents. These agents are partitioned into m

1
λ+1 sets of size m

j
λ+1 so that the agents of each such set

all rank the same alternative of Aj at position j. Therefore, by the assumption of the claim, we have that

|Sw | > m
1
λ+1 ·

(
1 − j

λ+1

)
· m j

λ+1 =
(
1 − j

λ+1

)
· m j+1

λ+1 .
Now, assume towards a contradiction that there exists an alternative w∗ ∈ Aj+1 such thatM queries at

most (1 − j+1
λ+1 ) · m

j+1
λ+1 of the agents in Sw∗ at the first ( j + 1) positions, and D(M) < Ω

(
1
λ+1 · m

1
2(λ+1)

)
. Let

S be the set of the agents in Sw∗ that are not queried byM at position ( j + 1). By our discussion so far, we
have that |S | ≥ |Sw∗ | −

(
1 − j+1

λ+1

)
· m j+1

λ+1 > 1
λ+1 · m

j+1
λ+1 , and therefore δi, j+1 = 1 for every agent i < S.

We now define two valuation profiles v1 and v2, which are consistent to the ordinal profile and any
information revealed by the queries ofM, but differ on the value that the agents of S have for alternative
w∗:

• In both v1 and v2, every agent i < S has value δi` · m−
`+1/2
λ+1 + (1 − δi`) · m− `

λ+1 for the alternative
ai` ∈ A` that she ranks at position ` ∈ [λ], value m−1 for alternatives x1 and x2, and zero value for her
tail alternatives.

• In both v1 and v2, every agent i ∈ S has value δi` ·m−
`+1/2
λ+1 +(1−δi`) ·m− `

λ+1 for the alternative ai` ∈ A`
that she ranks at position ` ∈ [λ] \ { j + 1}, value m−1 for alternatives x1 and x2, and zero value for her
tail alternatives.

• In v1, every agent i ∈ S has value m−
j+3/2
λ+1 for w∗.

• In v2, every agent i ∈ S has value m−
j+1/2
λ+1 for w∗.

Given the definition of these two valuation profiles, it is easy to compute the social welfare of the alternatives:

• The social welfare of every alternative z ∈ Y is

SW(z |v1) = SW(z |v2) = 0.

• The social welfare of alternatives x1 and x2 is

SW(x1 |v1) = SW(x1 |v2) = SW(x2 |v1) = SW(x2 |v2) = m · m−1 = 1.
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• The social welfare of any alternative z ∈ ∪`∈[λ]A` \ {w∗} is

SW(z |v1) = SW(z |v2) = λ

λ + 1
· m `

λ+1 · m− `+1/2
λ+1 +

1
λ + 1

· m `
λ+1 · m− `

λ+1

=
λ

λ + 1
· m− 1

2(λ+1) +
1

λ + 1
≤ 1.

• The social welfare of alternative w∗ is

SW(w∗ |v1) = λ

λ + 1
· m j+1

λ+1 · m− j+1+1/2
λ+1 +

1
λ + 1

· m j+1
λ+1 · m− j+3/2

λ+1 = m−
1

2(λ+1) ,

SW(w∗ |v2) = λ

λ + 1
· m j+1

λ+1 · m− j+1+1/2
λ+1 +

1
λ + 1

· m j+1
λ+1 · m− j+1/2

λ+1

=
λ

λ + 1
· m− 1

2(λ+1) +
1

λ + 1
· m 1

2(λ+1) .

Depending on the choices of the mechanismM, we set the valuation profile to be either v1 or v2 so that
the distortion is as high as possible. In particular, we have:

• If M selects alternative w∗, we set the valuation profile to be v1. Hence, the social welfare of the
winner w∗ is m−

1
2(λ+1) , while any alternative of X is optimal with social welfare 1, yielding distortion

m
1

2(λ+1) .

• IfM selects some alternative z ∈ X ∪`∈[λ] A` \ {w∗}, we set the valuation profile to be v2. Hence, the
social welfare of the winner z is at most 1, while alternative w∗ is optimal with social welfare at least

1
λ+1 · m

1
2(λ+1) , yielding distortion at least 1

λ+1 · m
1

2(λ+1) .

In any case, the distortion is Ω
(

1
λ+1 · m

1
2(λ+1)

)
and the proof of the claim follows.
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