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Abstract

We deal with the long time asymptotics of the Vlasov–Poisson–
Boltzmann equation. We prove existence and uniqueness for the equa-
tion giving the electric potential at the limit.
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1 Introduction

Plasmas (gases of charged particles) can be described using kinetic equa-
tions. To simplify the analysis, we shall only consider jelliums, which are
plasmas containing only one species of particles (of mass m and charge e).
Let us denote f(t, x, v) the density of particles, which at time t and point
x, move with velocity v. We assume that the particles remain in a bounded
domain Ω and, since we are not interested in relativistic phenomena, the
velocity v belongs to IR3.

In the mean field approximation, when particles interact only through
electromagnetic forces, the density f solves the Vlasov equation,

∂f

∂t
+ v · ∇xf + F · ∇vf = 0, (1)

where F is proportional to the Lorentz force created by the mean electro-
magnetic field.

Next, we shall assume that magnetic forces are negligeable, and therefore

F = − e

m
∇xφ, (2)

where the electric potential φ obeys Poisson’s law

−4xφ =
e

ε0

∫
v∈IR3

f dv, (3)

and where ε0 is the electric permeability of the vacuum. The system (1) – (3)
is called the Vlasov–Poisson system.

Now, to give a more realistic description of the plasma, we take the
elastic collisions between particles into account. Denoting by (v, v1) and
(v′, v′1) the velocities of the particles respectively before and after a collision,
the conservation of momentum and energy gives

v′ + v′1 = v + v1, (4)

|v′|2 + |v′1|2 = |v|2 + |v1|2, (5)

(6)

which can be parametrized under the form

v′ = v − ((v − v1) · ω)ω, (7)

v′1 = v1 + ((v − v1) · ω)ω, (8)
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where ω is a unit vector of IR3.
Assuming that there is no correlation between particles before and after

a collision, we now have to solve the Vlasov–Poisson–Boltzmann equation,

∂f

∂t
+ v · ∇xf −

e

m
∇xφ · ∇vf = Q(f, f), (9)

where Q is the Boltzmann quadratic collision kernel (acting only on veloci-
ties),

Q(f, f)(v) =

∫
v1∈IR3

∫
ω∈S2

{
f(v′)f(v′1)− f(v)f(v1)

}
B(v − v1, ω) dωdv1,

(10)
and B is a collision cross section (Cf. [Ce], [Ch, Co] and [Tr, Mu]).

We prove in this work the convergence towards equilibrium for a regular
solution of the Vlasov–Poisson–Boltzmann equation in a bounded domain
with appropriate boundary conditions. Note that such a result is already
known for the Boltzmann equation, even for renormalized solutions (Cf. [A]
and [De 1]). The reader will find a survey on this subject in [De 2].

Moreover, we give a description of the Maxwellian steady states for such
a plasma, when the mass and energy of the particles are fixed. Note that
D. Gogny and P-L. Lions have already given such a description when the
mass and temperature are fixed (Cf. [G, L]). For the study of the stationnary
solutions of these equations, we refer also to [Do].

In section 2, we prove that in the long time asymptotics, the density of
particles satisfying the Vlasov–Poisson–Boltzmann equation converges to a
Maxwellian with zero bulk velocity, and uniform temperature. Moreover,
we give an equation for the electric potential in this limit.

A formula for the temperature and density of the Maxwellian is given in
section 3, using conservation of mass and energy.

Existence and uniqueness for the equation satisfied by the electric po-
tential is proved in section 4.

Finally, we give in section 5 some additional results. Namely, we extend
our methods to several models of collision kernels, and explain how to mod-
ify our analysis to take into account magnetic forces. We give also some
indications about a model with several species of particles.
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2 Long time asymptotic behavior of the Vlasov–
Poisson–Boltzmann equation

In this section, we are interested in the long time asymptotic behavior of
regular solutions of the Vlasov–Poisson–Boltzmann equation and in the form
of their stationary limit.

Let us assume that the cross section B satisfies the

Assumption 1: The cross section B is strictly positive a.e., depends
only on |v− v1| and |(v− v1) ·ω|, and satisfies for some K > 0 the following
bound,

B(v − v1, ω) ≤ K(1 + |v|+ |v1|). (11)

Note that the cross sections B coming out of hard potentials with the
angular cut–off of Grad (Cf. [Gr]) satisfy assumption 1.

We shall denote n(x) the outward normal to ∂Ω at point x. We assume
the specular reflexion of each particle against the wall:

For every t in [0,+∞[, x in ∂Ω, v in IR3, such that v · n(x) ≤ 0,

f(t, x, v) = f(t, x,Rv), (12)

where
Rv = v − 2(v · n(x))n(x). (13)

Moreover, we suppose that the boundary ∂Ω of the domain is a perfect
conductor and therefore:

For every t in [0,+∞[, x in ∂Ω,

φ(t, x) = 0. (14)

Finally, we prescribe initial data:

f(0, x, v) = f0(x, v), (15)

and
φ(0, x) = φ0(x), (16)

satisfying the following assumption:
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Assumption 2: The initial datum f0 is nonnegative. It is compatible
with the initial datum φ0,

−4xφ0 =

∫
v∈IR3

f0 dv, (17)

and the total mass, energy and entropy are finite,∫
x∈Ω

∫
v∈IR3

f0

(
1 + |v|2 + | log f0|

)
dvdx+

ε0
m

∫
x∈Ω
|∇xφ0|2dx < +∞. (18)

Note that R.J. DiPerna and P-L. Lions proved in [DP, L 3] that when
the position x belongs to IR3 and under suitable assumptions on f0 and B,
there exists a global nonnegative renormalized solution to the Boltzmann
equation,

∂f

∂t
+ v · ∇xf = Q(f, f). (19)

This result has been extended by K. Hamdache in [Ha] to the case when x
lies in a subset of IR3 and f satisfies appropriate boundary conditions (like
specular reflexion).

Moreover, R.J. DiPerna and P-L. Lions have also proved in [DP, L 2] a
theorem of existence for the Vlasov–Poisson equation,

∂f

∂t
+ v · ∇xf −

e

m
∇xφ · ∇vf = 0, (20)

−4xφ =
e

ε0

∫
v∈IR3

fdv, (21)

when x belongs to IR3 and for a large class of initial data. The existence of
strong solutions for this system is also investigated in [Pf] and [Sc].

It is possible to mix the results on the Boltzmann equation and on the
Vlasov–Poisson equation when x belongs to IR3, in order to obtain solutions
to the Vlasov–Poisson–Boltzmann problem (3), (9) (Cf. [L]). However, there
is no result for the time being on this equation when boundary conditions
like (12) and (14) are required for the solution.

Therefore, we shall from now on consider solutions of equations (3) –
(10) and (12) – (14) whose existence we do not know. More precisely, we
shall consider such solutions (f, φ) satisfying the following assumption:

Assumption 3: The density f is nonnegative, bounded and uniformly
continuous on [0,+∞[×Ω × IR3, it also belongs to L∞([0, T ] × Ω;L1(IR3)).
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Moreover, the potential φ belongs to C2([0,+∞[×Ω) and its derivatives up
to second order are bounded and uniformly continuous.

The main result of this section is the following:

Theorem 1: Let Ω be a regular (of class C2) bounded and simply con-
nected open set of IR3 such that ∂Ω is not a surface of revolution, and assume
that (f, φ) is a solution of equations (3) – (10) and (12) – (14) under as-
sumptions 1, 2, 3. Let tn be a sequence of real numbers going to infinity, and
T be a strictly positive real number. We define fn(t, x, v) = f(t + tn, x, v)
and φn(t, x, v) = φ(t+ tn, x, v).

Then, there exist a subsequence tnk , a function ψ(x) in C2(Ω), ρ ≥ 0
and θ > 0 such that fnk(t, x, v) converges uniformly on every compact sets
of [0, T ]× Ω× IR3 to

g(t, x, v) =
ρ

(2πθ)
3
2

exp
{
− eψ(x)

mθ
− v2

2θ

}
, (22)

and φnk(t, x) converges in C2([0, T ]×Ω) to ψ(x). Moreover, g, ψ satisfy the
boundary conditions (12) – (14), and the potential ψ is such that

−4xψ = ρ
e

ε0
exp

{
− eψ(x)

mθ

}
. (23)

Proof of theorem 1: Assumption 3 ensures that the sequence fn is
equicontinuous. Moreover, it ensures that for a given (t, x, v) in [0, T ]×Ω×
IR3, the sequence fn(t, x, v) is bounded. According to Ascoli’s theorem, it is
possible to extract from fn a subsequence fnk such that fnk converges uni-
formly on every compact sets of [0, T ]×Ω×IR3 to a bounded and continuous
function g(t, x, v).

Moreover, assumption 3 also ensures that the same manipulation holds
for φn and its derivatives up to second order. Therefore, it is possible to
extract from φn a subsequence φnk such that φnk converges in C2([0, T ]×Ω)
to a function ψ(t, x).

The proof of identities (22) and (23) is divided in four steps.

Note that we shall need in the sequel the conservation of mass∫
x∈Ω

∫
v∈IR3

f(t, x, v) dvdx =

∫
x∈Ω

∫
v∈IR3

f0(x, v) dvdx, (24)
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and the conservation (or at least the decrease) of energy∫
x∈Ω

∫
v∈IR3

f(t, x, v) |v|2 dvdx+
ε0
m

∫
x∈Ω
|∇xφ(t, x)|2 dx

≤
∫
x∈Ω

∫
v∈IR3

f0(x, v) |v|2 dvdx+
ε0
m

∫
x∈Ω
|∇xφ0(x)|2 dx. (25)

These estimates will be proved in section 3.

First step: The functions g, ψ still satisfy equations (3) – (10) and
(12) – (14).

Proof of the first step: It is clear that ∂tf
nk + v · ∇xfnk tends to

∂tg + v · ∇xg in the sense of distributions.
Moreover,

∇xφnk · ∇vfnk = ∇v · (fnk∇xφnk), (26)

and fnk∇xφnk converges uniformly on every compact sets of [0, T ]×Ω× IR3

to g∇xψ. Therefore, e
m∇xφ

nk ·∇vfnk converges to e
m∇xψ ·∇vg in the sense

of distributions.
The conservation (or decrease) of energy (25) (which will be stated in

section 3) ensures that for every t in [0,+∞[,∫
x∈Ω

∫
v∈IR3

f(t, x, v) |v|2 dvdx ≤ E0, (27)

where E0 is the initial energy. Therefore, e
ε0

∫
v∈IR3 fnkdv tends to e

ε0

∫
v∈IR3 gdv

in the sense of distributions.
Moreover, it is clear that −4xφ

nk tends to −4xψ in the sense of distri-
butions.

Therefore, it only remains to pass to the limit in the sense of distributions
in the collision term Q(fnk , fnk).

According to estimate (27),∫
x∈Ω

∫
|v|≥R

f(t, x, v) dvdx ≤ E0

R2
. (28)

Therefore, according to assumption 1, when R is large enough,∫
x∈Ω

∫
|v|2+|v1|2≥R2

∫
ω∈S2

fnk(t, x, v)fnk(t, x, v1)B(v − v1, ω) dωdv1dvdx
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≤
∫
x∈Ω

∫
|v|2≥R2/2

∫
|v1|2≥R2/2

fnk(t, x, v)fnk(t, x, v1)K(1 + |v|+ |v1|) dv1dvdx

≤ 3‖f‖L∞([0,+∞[×Ω;L1(IR3))
2KE0

R
. (29)

Moreover,∫
x∈Ω

∫
|v′|2+|v′1|2≥R2

∫
ω∈S2

fnk(t, x, v′)fnk(t, x, v′1)B(v − v1, ω) dωdv1dvdx

=

∫
x∈Ω

∫
|v|2+|v1|2≥R2

∫
ω∈S2

fnk(t, x, v)fnk(t, x, v1)B(v − v1, ω) dωdv1dvdx.

(30)
Using estimates (29), (30) and the dominated convergence theorem, we get
the convergence of Q(fnk , fnk) towards Q(g, g) in the sense of distributions.

Finally, we can pass to the limit in equations

∂fnk

∂t
+ v · ∇xfnk −

e

m
∇xφnk · ∇vfnk = Q(fnk , fnk), (31)

and

−4xφ
nk =

e

ε0

∫
v∈IR3

fnk dv. (32)

We obtain
∂g

∂t
+ v · ∇xg −

e

m
∇xψ · ∇vg = Q(g, g), (33)

and

−4xψ =
e

ε0

∫
v∈IR3

g dv. (34)

Moreover, it is clear that the boundary conditions (12) and (14) still hold
for g and ψ. Therefore, for every t in [0, T ], x in ∂Ω, v in IR3, such that
v · n(x) ≤ 0,

g(t, x, v) = g(t, x,Rv), (35)

and
ψ(t, x) = 0. (36)

Second step: There exists a nonnegative measurable density r(t, x), a
strictly positive measurable temperature T (t, x) and a measurable bulk veloc-
ity u(t, x) such that g is the Maxwellian of parameters r, u and T ,

g(t, x, v) =
r(t, x)

(2πT (t, x))3/2
e
− (v−u(t,x))2

2T (t,x) . (37)
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Moreover, the function g satisfies the Vlasov equation,

∂g

∂t
+ v · ∇xg −

e

m
∇xψ · ∇vg = 0. (38)

Proof of the second step: We proceed as in [De 1]. According to
Boltzmann’s H theorem and to the proof in [DP, L 1] and [Ha], the function
f satisfies the following estimate:

sup
t∈[0,+∞[

∫
x∈Ω

∫
v∈IR3

f(v) | log f(v)| dxdv

+

∫ +∞

t=0

∫
x∈Ω

∫
v∈IR3

∫
v1∈IR3

∫
ω∈S2

{
f(v′)f(v′1)− f(v)f(v1)

}
{

log
(
f(v′)f(v′1)

)
− log

(
f(v)f(v1)

)}
B(v − v1, ω) dωdv1dvdxdt < +∞.

(39)
Therefore, the entropy dissipation∫ T

0

∫
x∈Ω

∫
v∈IR3

∫
v1∈IR3

∫
ω∈S2

{
fnk(v′)fnk(v′1)− fnk(v)fnk(v1)

}
{

log
(
fnk(v′)fnk(v′1)

)
− log

(
fnk(v)fnk(v1)

)}
B(v − v1, ω) dωdv1dvdxdt

(40)
tends to 0 as k tends to infinity.

But the function

Θ(x, y) = (x− y)(log x− log y) (41)

is nonnegative, and therefore, using assumption 1, we can extract from fnk

a subsequence still denoted by fnk such that for a.e. (t, x, v, v1, ω) in [0, T ]×
Ω× IR3 × IR3 × S2,

Θ
(
fnk(t, x, v′)fnk(t, x, v′1), fnk(t, x, v)fnk(t, x, v1)

)
−→
k→+∞

0. (42)

But this quantity tends also uniformly on every compact sets of [0, T ]×Ω×
IR3 × IR3 × S2 to

Θ
(
g(t, x, v′)g(t, x, v′1), g(t, x, v)g(t, x, v1)

)
. (43)
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Therefore, for a.e. (t, x, v, v1, ω) in [0, T ]× Ω× IR3 × IR3 × S2,

g(t, x, v′) g(t, x, v′1) = g(t, x, v) g(t, x, v1). (44)

Using a result of [Tr, Mu] for example, we see that g is almost everywhere a
Maxwellian function of v (whose parameters may depend on t, x). Therefore,
we can write

g(t, x, v) =
r(t, x)

(2πT (t, x))3/2
e
− (v−u(t,x))2

2T (t,x) , (45)

where r, u and T are measurable. But g is locally bounded, therefore the
temperature T is strictly positive (and different from +∞) for a.e. (t, x).
Moreover, g is nonnegative, therefore r ≥ 0 for a.e. (t, x). Finally, Q(g, g) =
0, since g is a Maxwellian, and according to eq. (33), g satisfies the Vlasov
equation (38).

Third step: The density r defined in the second step is strictly positive
(except in the trivial case when f0 = 0). Moreover, the parameters r, u and
T defined in the second step are continuous.

Proof of the third step: The conservation of mass (24) (which will be
proved in section 3) and estimate (27) ensures that g still satisfies,∫

x∈Ω

∫
v∈IR3

g(t, x, v) dvdx =

∫
x∈Ω

∫
v∈IR3

f0(x, v) dvdx. (46)

Except when f0 = 0, we obtain for all t in [0, T ] the existence of (x0, v0) in
Ω×IR3 such that g(t, x0, v0) > 0. But eq. (45) ensures that r(t, x0) > 0, and
therefore for all v in IR3, g(t, x0, v) > 0. Because of eq. (38), g(t+τ, x0, v) =
g(t, x0 + vτ + o(τ), v(τ)) and therefore, for every τ small enough, and every
x in Ω, one can find v such that g(t+ τ, x, v) = g(t, x0, v(τ)) (note that if Ω
is not convex, one has to carry out this analysis several times). Therefore,
g(t + τ, x, v) > 0 and r(t + τ, x) > 0. Finally, the function r is strictly
positive. But r is also the local density

r(t, x) =

∫
v∈IR3

g(t, x, v) dv, (47)

therefore r is continuous, and 1
r is also continuous. Finally, r u and r T

can be obtained as moments of g, and as a consequence u and T are also
continuous.

Fourth step: The functions g and ψ satisfy identities (22) and (23).
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Proof of the fourth step: Note first that because of the averaging
lemmas introduced in [DP, L 3], eq. (34), eq. (38) and eq. (45) together with
the boundary conditions ensure that the macroscopic parameters r, u and T
are smooth. Because of the strict positivity of r and T , the quantities log r,
log T and 1

T are also smooth.
We recall the properties of log g and ψ collected in the previous steps of

the proof,

1. The quantity log g satisfies the Vlasov equation,

∂t log g + v · ∇x log g − e

m
∇xψ · ∇v log g = 0. (48)

2. The potential ψ satisfies the Poisson equation (34).

3. The boundary conditions (35) and (36) hold for log g and ψ.

4. The function log g is the logarithm of a Maxwellian function of v,

log g = log r − 3

2
log(2πT )− |v − u|

2

2T
. (49)

Then, we inject eq. (49) in eq. (48) and get a polynomial in v − u of
degree 3 which is always equal to 0. Looking at the term of highest degree,
we get the equation,

∇x
{ 1

T

}
= 0. (50)

Therefore, the temperature T (t, x) depends only on t. We write

T (t, x) = T0(t). (51)

Then, looking at the term of degree 2, we can see that for any vector h of
modulus 1, ( 1

T0

)′
+∇x u(h, h) = 0. (52)

According to [De 1], there exist a skew–symmetric tensor Λ depending on t
and a vector C depending also on t such that

u(t, x) =
( 1

T0

)′
(t)x+ Λ(t)(x) + C(t). (53)

But boundary condition (35) ensures that for all t in [0, T ], x in ∂Ω,

u(t, x) · n(x) = 0. (54)
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Therefore, if we define a curve in IR3 by

dx

ds
(s) = u(t, x(s)), (55)

x(0) ∈ ∂Ω, (56)

the point x(s) will remain in ∂Ω for every s in IR.
Then, we proceed as in [De 1]. Since ∂Ω is bounded and is not a surface

of revolution, we get( 1

T0

)′
(t) = 0, C(t) = 0, Λ(t) = 0. (57)

Therefore,
u(t, x) = 0. (58)

Moreover, we can define θ > 0 by

T0(t) = θ. (59)

Note that eq. (49) injected in eq. (48) also yields

∂r

∂t
= 0, (60)

and
∇x log r +

e

mθ
∇xψ = 0. (61)

Therefore, r does not depend on t. We denote:

r(t, x) = r0(x). (62)

Then, g can be written as

g(t, x, v) =
r0(x)

(2πθ)3/2
exp

{
− v2

2θ

}
, (63)

and it clearly does not depend on t. But according to eq. (34) and eq. (36),
the potential ψ does not depend on t either. Therefore, according to eq. (61),
there exists ρ > 0 such that

r0(x) = ρ exp
{
− eψ(x)

mθ

}
, (64)

which concludes the proof of theorem 1.

We now investigate the global conservations for the Vlasov–Poisson–
Boltzmann equation.
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3 Conservations of mass and energy, applications

We begin this section with the (formal) proof of conservation of mass and
energy for system (3) – (10), (12) – (14). Note first that (according to
[Tr, Mu] for example) when χ(v) = 1, v, or |v|2,∫

v∈IR3
Q(f, f)(v)χ(v) dv = 0. (65)

Note that this property immediately yields the conservation of mass

∂

∂t

∫
x∈Ω

∫
v∈IR3

f dvdx = 0. (66)

Moreover, multiplying eq. (9) by |v|2 and integrating over x and v, one gets

∂

∂t

{∫
x∈Ω

∫
v∈IR3

f |v|2 dvdx
}
−
∫
x∈Ω

∫
v∈IR3

e

m
∇xφ · ∇vf |v|2 dvdx = 0. (67)

Denoting by dσ(x) the natural measure on ∂Ω, we get after an integration
by parts with respect to x and v,

∂

∂t

{∫
x∈Ω

∫
v∈IR3

f |v|2dvdx
}
− 2

∫
x∈Ω

e

m
φ∇x ·

{∫
v∈IR3

f v dv
}
dx

+2

∫
x∈∂Ω

∫
v∈IR3

e

m
φf (v · n(x)) dvdσ(x) = 0. (68)

Using now the local conservation of mass,

∂

∂t

{∫
v∈IR3

f dv
}

+∇x ·
{∫

v∈IR3
f v dv

}
= 0, (69)

and the boundary condition (14), estimate (68) becomes

∂

∂t

{∫
x∈Ω

∫
v∈IR3

f |v|2 dvdx
}

+ 2

∫
x∈Ω

e

m
φ
∂

∂t

{∫
v∈IR3

f dv
}
dx = 0. (70)

Using now Poisson’s equation (3) and integrating by parts with respect to
x, we get

∂

∂t

{∫
x∈Ω

∫
v∈IR3

f |v|2 dvdx
}

+
ε0
m

∫
x∈Ω

2∇xφ
∂

∂t
(∇xφ) dx

+
ε0
m

∫
x∈∂Ω

2φ
{
− n(x) · ∇x

(∂φ
∂t

)}
dσ(x) = 0. (71)
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Using once again the boundary condition (14), we get at last the conservation
of energy,

∂

∂t

{∫
x∈Ω

∫
v∈IR3

f |v|2 dvdx+
ε0
m

∫
x∈Ω
|∇xφ|2 dx

}
= 0. (72)

For a solution of the Vlasov–Poisson–Boltzmann system (3) – (10), (12) –
(14), satisfying assumptions 1, 2, 3 of theorem 1, the a–priori estimate (66)
holds, and it yields identity (24). Identity (72) also holds, although perhaps
only as an inequality, whence eq. (27). estimates (27) and (39) ensure that
one can pass to the limit in eq. (24) when the time t tends to infinity (this
property has already been used). However, it is not possible to pass to
the limit in eq. (25) without a stronger assumption. Therefore, we shall
from now on deal with solutions of (3) – (10), (12) – (14), which satisfy the
following property,

Assumption 4: There exists ε > 0 such that

sup
t∈[0,+∞[

∫
x∈Ω

∫
v∈IR3

f |v|2+ε dvdx+ sup
t∈[0,+∞[

∫
x∈Ω
|∇xφ|2+εdx < +∞. (73)

If f0 is an initial datum, we denote now by M0 the initial mass,

M0 =

∫
x∈Ω

∫
v∈IR3

f0(x, v) dvdx, (74)

by E0 the initial energy,

E0 =

∫
x∈Ω

∫
v∈IR3

f0(x, v) |v|2 dvdx+
ε0
m

∫
x∈Ω
|∇xφ0(x)|2dx, (75)

by χ the constant

χ =
4mE0ε0
9M2

0 e
2
, (76)

and by F the function

F (t) = 1 +
√

1 + χt2 . (77)

Moreover, we define the three following constants Ci, (i = 1, 2, 3), which
depend only upon the physical constants of the problem,

C1 = M0

( 3M0

4πE0

)3/2
, C2 =

3M0

4E0
, C3 =

2mE0

3M0e
. (78)
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Theorem 2: Let Ω be a regular (of class C2) bounded and simply con-
nected open set of IR3 such that ∂Ω is not a surface of revolution. Assume
that (f, φ) is a solution of (3) – (10), (12) – (14) satisfying assumptions
1,2,3 and 4. Then there exists a function V (x) in C2(Ω) such that for every
strictly positive T , f τ (t, x, v) = f(t + τ, x, v) converges uniformly on every
compact sets of [0, T ]× Ω× IR3 when τ tends to infinity to

g(x, v) =
C1∫

x∈Ω e
−V dx

(
F
(
‖∇xV ‖L2(Ω)

))3/2

e
−V (x)−C2F (‖∇xV ‖L2(Ω))|v|

2

,

(79)
and φτ (t, x) = φ(t+ τ, x) converges in C2([0, T ]× Ω) to

ψ(x) =
C3

F (||∇xV ||L2(Ω))
V (x). (80)

Moreover, the potential V satisfies the following equation,

−3

2

χ∆xV

F (‖∇xV ‖L2(Ω))
=

e−V∫
x∈Ω e

−V dx
, (81)

and V = 0 on ∂Ω.

Proof of theorem 2: We define as in theorem 1 for all sequence tn
going to infinity the functions fn(t, x, v) = f(t + tn, x, v), and φn(t, x, v) =
φ(t+tn, x, v). Theorem 1 ensures that we can extract from tn a subsequence
tnk such that fnk converges uniformly on every compact sets of [0, T ]×Ω×IR3

to g defined by (22) for any T > 0, and φnk converges in C2([0, T ] × Ω) to
ψ.

But according to estimates (66), (72) and (73), we get for all t ∈ [0, T ],∫
x∈Ω

∫
v∈IR3

fnk(t, x, v) dvdx = M0, (82)

and∫
x∈Ω

∫
v∈IR3

fnk(t, x, v) |v|2 dvdx+
ε0
m

∫
x∈Ω
|∇xφnk(t, x)|2dx = E0. (83)

We can pass to the limit in eq. (82) because of estimates (27) and (39) and
obtain the conservation of mass for g,∫

x∈Ω

∫
v∈IR3

g(t, x, v) dvdx = M0. (84)
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Moreover, estimates (39) and (73) ensure that the passage to the limit in
(83) holds. It yields∫

x∈Ω

∫
v∈IR3

g(t, x, v) |v|2 dvdx+
ε0
m

∫
x∈Ω
|∇xψ(t, x)|2dx = E0. (85)

Injecting (22) in (84) and (85), one obtains,

ρ

∫
x∈Ω

exp
{
− eψ(x)

mθ

}
dx = M0, (86)

and

3ρθ

∫
x∈Ω

exp
{
− eψ(x)

mθ

}
dx+

ε0
m

∫
x∈Ω
|∇xψ|2dx = E0. (87)

We denote

V (x) =
eψ(x)

mθ
. (88)

Equations (86) and (87) become,

ρ

∫
x∈Ω

exp
{
− V (x)

}
dx = M0, (89)

and

3M0θ +
mε0
e2

θ2
∫
x∈Ω
|∇xV |2 dx = E0. (90)

We can solve eq. (89) and eq. (90) (knowing that θ must be strictly positive),
and get,

ρ =
M0∫

x∈Ω exp{−V (x)}dx
, (91)

and

θ =
2E0

3M0F (||∇xV ||L2(Ω))
. (92)

Therefore, we obtain for g and ψ the identities given in (79) and (80). More-
over, theorem 1 provided for ψ eq. (23), therefore, V satisfies (81). It remains
to prove that the whole families (f τ )τ≥0 and (φτ )τ≥0 converge to g and ψ.
This is due to the uniqueness of the limit of fnk and φnk . Indeed, V is
defined in a unique way by (81) and the fact that V = 0 on ∂Ω (as it will
be seen in section 4, theorem 3).
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4 Existence, uniqueness and regularity results

We are now interested in the properties of eq. (81),

−3

2

χ∆xV

1 +
√

1 + χ
∫
x∈Ω |∇xV |2 dx

=
e−V∫

x∈Ω e
−V dx

(93)

with the Dirichlet boundary condition (imposed by theorem 2)

V = 0 on ∂Ω. (94)

The main statement of this section is the following:

Theorem 3: Let Ω be a regular (of class C2) open set of IR3. For any
χ > 0, eq. (93) with boundary condition (94) has one and only one solution
V . This solution is strictly positive on Ω and of class C2(Ω) ∩ C∞(Ω).

Proof of theorem 3: First, we prove the existence of a positive solution
of eq. (93) with boundary condition (94).

Let us define the functional J on H1
0 (Ω) by setting

J(U) = φ
(
||∇xU ||L2(Ω)

)
+ log

(∫
x∈Ω

e−Udx

)
, (95)

where φ is defined on IR+ and

φ(t) =
3

2

(√
1 + χt2 − log

(
1 +

√
1 + χt2

))
. (96)

The following lemma proves that J is bounded below.

Lemma 1 : Let Ω be a regular (of class C2) open set of IR3. There
exists a continuous function F defined on [0,+∞[ such that

F (t) = −2 log t+O(1) when t→ +∞, (97)

and

∀U ∈ H1
0 (Ω), log

(∫
x∈Ω

e−U dx

)
≥ F

(
‖∇xU‖L2(Ω)

)
. (98)
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We shall give a more general version and a proof of the lemma in the
appendix.

Now, we use the same method as in [Do]. Let us consider a minimizing
sequence (Vn)n∈IN , i.-e. a sequence satisfying

lim
n→+∞

J(Vn) = inf
U∈H1

0 (Ω)
J(U). (99)

It is not restrictive to assume that for every n ∈ IN , we have

J(Vn) ≤ J(0) = log |Ω|. (100)

Now, one can easily prove that when t goes to infinity, φ(t) is equivalent
to 3

2

√
χ t. According to lemma 1, the sequence (‖∇xVn‖L2(Ω))n∈IN remains

bounded. Moreover it is clear that

∀U ∈ H1
0 (Ω), J(U+) ≤ J(U), (101)

since φ is increasing. Therefore, we can also suppose that

∀n ∈ IN, Vn ≥ 0. (102)

There exists a nonnegative function V of H1
0 (Ω) such that, after extraction

of a subsequence if necessary, ∇xVn ⇀ ∇xV in L2(Ω), and Vn → V a.e. The
lower semi-continuity of the L2-norm ensures that

‖∇xV ‖L2(Ω) ≤ lim inf
n→+∞

‖∇xVn‖L2(Ω), (103)

and since φ is increasing,

φ
(
‖∇xV ‖L2(Ω)

)
≤ lim inf

n→+∞
φ
(
‖∇xVn‖L2(Ω)

)
. (104)

Using Lebesgue’s theorem of dominated convergence, we obtain

lim
n→+∞

∫
x∈Ω

e−Vn dx =

∫
x∈Ω

e−V dx, (105)

and therefore
J(V ) = inf

U∈H1
0 (Ω)

J(U). (106)
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Now, let us consider the functional J+ defined on H1
0 (Ω) by

J+(U) = φ
(
‖∇xU‖L2(Ω)

)
+ log

(∫
x∈Ω

e−U
+
dx

)
. (107)

We have
∀U ∈ H1

0 (Ω), J(U+) ≤ J+(U) ≤ J(U), (108)

and therefore
J+(V ) = inf

U∈H1
0 (Ω)

J+(U). (109)

But J+ is a functional of class C1 on H1
0 (Ω), and for all U ∈ H1

0 (Ω),

dJ+(U) = −3

2

χ∆xU

1 +
√

1 + χ
∫
x∈Ω |∇xU |2 dx

− e−U
+∫

x∈Ω e
−U+ dx

. (110)

Therefore
dJ+(V ) = 0

⇐⇒ −3

2

χ∆xV

1 +
√

1 + χ
∫
x∈Ω |∇xV |2 dx

=
e−V

+∫
x∈Ω e

−V + dx

⇐⇒ −3

2

χ∆xV

1 +
√

1 + χ
∫
x∈Ω |∇xV |2 dx

=
e−V∫

x∈Ω e
−V dx

(111)

since V ≥ 0 a.e.
Finally, V is a nonnegative solution of eq. (93) with boundary condition

(94).

We have now to prove the uniqueness of the solution. Let us define the
convex cone H+ by setting

H+ = {U ∈ H1
0 (Ω)/ U ≥ 0 a.e on Ω }. (112)

According to the maximum principle, every solution of eq. (93) with bound-
ary condition (94) is nonnegative and belongs therefore to H+. As a con-
sequence, every solution V satisfies dJ+(V ) = 0. But J+(U) = J(U) for
all U ∈ H+, and J is strictly convex. Indeed, φ is increasing and strictly
convex, and the L2-norm is strictly convex. If we consider two functions U1

and U2 of H1
0 (Ω) and t ∈ [0, 1], we get

log

(∫
IRN

ρ0e
−
(
tU1+(1−t)U2

)
dx

)
= log

(∫
IRN

(
ρ0e
−U1

)t (
ρ0e
−U2

)(1−t)
dx

)
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≤ t log

(∫
IRN

ρ0e
−U1 dx

)
+ (1− t) log

(∫
IRN

ρ0e
−U2 dx

)
, (113)

according to Hölder’s inequality.
The functional J+ is therefore strictly convex on H+, which ensures that

the solution of dJ+(V ) = 0 is unique on H+. Finally, the solution of eq. (93)
with boundary condition (94) is unique.

It is easy to prove that the solution is strictly positive on Ω with the
maximum principle, and of class C2(Ω)∩C∞(Ω) with an elliptic bootstraping
argument.

Because of the uniqueness of the solution, one can also prove that V is
radially symmetric if Ω is a ball. Indeed, the solution composed with every
rotation is still a solution.

5 Some additional results

5.1 Others collision kernels

First note that in the analysis of sections 2, 3 and 4, the only algebraic
properties required on the kernel Q is the existence of an entropy, and the
conservations of mass and energy.

More precisely, the kernel Q must satisfy:∫
v∈IR3

Q(f, f) dv = 0, (114)

∫
v∈IR3

Q(f, f) |v|2 dv = 0, (115)∫
v∈IR3

Q(f, f) log f dv ≤ 0, (116)

and ∫
v∈IR3

Q(f, f) log f dv = 0 (117)

if and only if f is a Maxwellian function of v.
Note that these assumptions are satisfied by the B.G.K. kernel (Cf.

[Bh, Gr, Kr]),
Q(f, f) = Mf − f, (118)

where Mf is the Maxwellian having the same moments as f .
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They are also satisfied by the Fokker–Planck–Landau collision kernel
(Cf. [Li, Pi]),

Q(f, f) = ∇v ·
∫
v1∈IRN

Θ(|v − v1|)
{
Id− (v − v1)⊗ (v − v1)

|v − v1|2
}

{
f(v1)∇vf(v)− f(v)∇v1f(v1)

}
dv1, (119)

where Θ is a strictly positive function going from IR to IR.
Therefore, the analysis of sections 2, 3 and 4 still holds (at least formally)

if Q(f, f) is one of these kernels.
In fact the most accurate collision kernel to consider in the case of a

plasma may be a sum of Boltzmann’s kernel and Fokker–Planck–Landau’s
kernel.

5.2 Influence of a magnetic field

We can also take in account the presence of a magnetic field. In such a
model, it is still possible to write a Vlasov–Boltzmann equation,

∂f

∂t
+ v · ∇xf +

e

m

(
E + v ×B

)
· ∇vf = Q(f, f), (120)

where E and B are respectively the electric and magnetic fields, satisfying
the Maxwell system,

−ε0µ0
∂E

∂t
+ Curl xB = eµ0

∫
v∈IR3

f v dv, (121)

∂B

∂t
+ Curl xE = 0, (122)

Div xE =
e

ε0

∫
v∈IR3

f dv, (123)

Div xB = 0, (124)

and ε0 is the electric permeability of vacuum and µ0 is the magnetic permit-
tivity of vacuum. Note that the existence of a global renormalized solution
to this system is now proved when L2 bounds are imposed on the initial
data (Cf. [DP, L 2]). According to [J], it is possible to find a potential φ
and a vector potential A such that

E = −∇xφ−
1

ε0µ0

∂A

∂t
, (125)
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and
B = Curl xA. (126)

Then, we take the following boundary conditions:
For every t in [0,+∞[, x in ∂Ω, v in IR3, such that v · n(x) ≤ 0,

f(t, x, v) = f(t, x,Rv), (127)

φ(t, x) = 0, (128)

A(t, x) = A0, (129)

where A0 is a constant vector potential imposed on the boundary. It is easy
to prove that the limit of the magnetic field B(t, x) when t tends to infinity
is 0. Therefore, all the results of section 3 still hold, except that the total
energy E0 is now given by

E0 =

∫
x∈Ω

∫
v∈IR3

f0 |v|2 dv +
ε0
m

∫
x∈Ω
|e0|2 dx+

1

mµ0

∫
x∈Ω
|b0|2 dx, (130)

where e0 and b0 are the initial electric and magnetic fields.

5.3 The case of several species

Finally, we give some results on a model where different species interact.
For every species i, we define the density fi(t, x, v), the mass mi and the
charge ei of one particle. We assume that the densities fi satisfy the Vlasov–
Poisson–Boltzmann equation,

∂fi
∂t

+ v · ∇xfi −
ei
mi
∇xφ · ∇vfi =

n∑
j=1

Qij(fi, fj), (131)

where Qij is a Boltzmann kernel describing the collisions between the par-
ticles of the species i and j. Note that for such a model (we assume that
the cross sections Bij associated to Qij are not identically equal to 0 for
all i, j = 1, 2, ..., n), the equilibrium is reached when the densities fi are
Maxwellian functions of v having the same temperature θ and the same
bulk velocity.

Moreover, we can write the Poisson equation for the potential,

−4xφ =
n∑
i=1

ei
ε0

∫
v∈IR3

fi dv. (132)
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We still require the boundary conditions (12) for each species i and (14) for
the potential φ. The analysis of section 2 leads to the following identities
for the limits gi and ψ of fi and φ when the time t goes to infinity,

gi(t, x, v) =
ρi

(2πθ)
3
2

exp
{
− eiψ(x)

miθ
− v2

2θ

}
, (133)

and

−4xψ =
n∑
i=1

ei
ε0
ρi exp

{
− eiψ(x)

miθ

}
. (134)

Moreover, if we denote by Mi the initial mass of the species i, and by Ei
the initial energy, the conservations of these quantities ensure that

Mi = mi ρi

∫
x∈Ω

exp
{
− eiψ(x)

miθ

}
dx, (135)

and

E =
n∑
i=1

3mi ρi θ

∫
x∈Ω

exp
{
− eiψ(x)

miθ

}
dx+ ε0

∫
x∈Ω
|∇xψ|2dx. (136)

We make the change of variable

V (x) =
ψ(x)

θ
, (137)

and denote
λi =

ei
mi
, (138)

M =
n∑
i=1

Mi, (139)

H(t) =
2E

3M +
√

9M2 + 4Eε0t2
. (140)

Equations (135) and (136) become

ρi =
µi∫

x∈Ω e
−λiV (x)dx

, (141)

and

ε0 θ
2
∫
x∈Ω
‖∇xV ‖2 dx+ 3 θM − E = 0. (142)
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Finally,

θ =
2E

3M +
√

9M2 + 4E ε0
∫
x∈Ω |∇xV |2dx

. (143)

Therefore,

gi(t, x, v) =
µi∫

x∈Ω e
−λiV (x)dx

(
2πH(||∇xV ||L2(Ω))

)− 3
2

exp

(
−λiV (x)− |v|2

2H(||∇xV ||L2(Ω))

)
, (144)

and
ψ(x) = 2EH(||∇xV ||L2(Ω)), (145)

where V satisfies:

−3

2

χ
′4xV

1 +
√

1 + χ′
∫
x∈Ω |∇xV |2 dx

=
n∑
i=1

λi
e−λiV (x)∫

x∈Ω e
−λiV (x) dx

, (146)

with

χ
′

=
4Eε0
9M2

, (147)

and this equation can be solved exactly as before.

Appendix

In this section, we give a proof of the following lemma:

Lemma 2 : Let Ω be a regular (of class C2) open set of IR3 and p belong
to ]1,+∞[. There exists a continuous function F defined on [0,+∞[ such
that

∀U ∈W 1,p
0 (Ω), log

(∫
x∈Ω

e−U dx

)
≥ F

(
‖∇xU‖Lp(Ω)

)
, (148)

with
F (t) = − p

p− 1
log t+ a+ o(1) when t→ +∞, (149)

and

a =
p

p− 1
×
(

log
( p

p− 1

|∂Ω|
K(Ω)

)
− 1

)
, (150)
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where K(Ω) is the constant appearing in Hardy’s inequality (168).

Proof of lemma 2: The proof is divided in two steps.
First, we prove that

∀U ∈W 1,p
0 (Ω), log

(∫
x∈Ω

e−U dx

)
≥ F1

(
‖∇xU‖Lp(Ω)

)
, (151)

with
F1(t) = A−B t, (152)

where A is a real constant and B a strictly positive real constant. This step
is necessary to prove that F is continuous and bounded in a neighborhood
of t = 0+.
In a second step, we prove that

∀U ∈W 1,p
0 (Ω), log

(∫
x∈Ω

e−U dx

)
≥ F2

(
‖∇xU‖Lp(Ω)

)
, (153)

where F2 is a continuous function on ]0,+∞[ such that

F2(t) = − p

p− 1
log t+ a+ o(1) when t→ +∞. (154)

The lemma is therefore proved with F = max(F1, F2).

First step of the proof: Let U belong to W 1,p
0 (Ω). According to

Jensen’s inequality, we have∫
x∈Ω

e−U dx ≥ |Ω| exp

{
−
(∫

x∈Ω U dx

|Ω|

)}
. (155)

Hölder’s inequality ensures that∫
x∈Ω

U dx ≤ |Ω|1−1/p ‖U‖Lp(Ω), (156)

and, according to Poincaré’s inequality, we get

‖U‖Lp(Ω) ≤ C(Ω) ‖∇xU‖Lp(Ω), (157)

where C(Ω) is a strictly positive constant, and∫
x∈Ω

U dx ≤ C(Ω) |Ω|1−1/p ‖∇xU‖Lp(Ω). (158)
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Therefore,

log

(∫
x∈Ω

e−U dx

)
≥ F1

(
‖∇xU‖Lp(Ω)

)
, (159)

with

F1(t) = ln |Ω| − C(Ω)

|Ω|1/p
t. (160)

Second step of the proof: Let us define the following quantities for
x ∈ Ω and λ > 0,

d(x) = d(x, ∂Ω), (161)

and
Ωλ = { x ∈ Ω / d(x) ≤ 1/λ }. (162)

Let U belong to W 1,p
0 (Ω) and define

V =
1

λ
U+. (163)

Then ∫
x∈Ω

e−U dx ≥
∫
x∈Ω

e−U
+
dx

≥
∫
x∈Ω

e−λV dx

≥
∫
x∈Ωλ

e−λV dx

≥
∫
x∈Ωλ

e−
V
d
λd dx

≥
∫
x∈Ωλ

e−
V
d dx. (164)

Using Jensen’s inequality, we get

∫
x∈Ωλ

e−
V
d dx ≥ |Ωλ| exp

{
−
(∫

x∈Ωλ
V
d dx

|Ωλ|

)}
. (165)

Then, Hölder’s inequality ensures that∫
x∈Ωλ

V

d
dx ≤ |Ωλ|1−1/p ‖V

d
‖Lp(Ωλ). (166)
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Moreover ∫
x∈Ωλ

V

d
dx ≤ |Ωλ|1−1/p ‖V

d
‖Lp(Ω), (167)

since Ωλ ⊂ Ω. According to Hardy’s inequality, we get

‖V
d
‖Lp(Ω) ≤ K(Ω) ‖∇xV ‖Lp(Ω), (168)

where K(Ω) is a strictly positive constant. Therefore,∫
x∈Ω

e−U dx ≥ |Ωλ| exp

{
−
(
K(Ω)

|Ωλ|1/p
‖∇xV ‖Lp(Ω)

)}
. (169)

Let us define the functions,

λ(t) =

(
p− 1

p

K(Ω)

|∂Ω|1/p
t

) p
p−1

, (170)

and

η(t) =
|∂Ω|

λ(t) |Ωλ(t)|
− 1. (171)

The choice of the form of λ(t) has been made in order to maximise the
value of the constant a which appears in (149). It is clear that η is positive,
continuous on ]0,+∞[ and that

lim
t→+∞

η(t) = 0. (172)

Let us assume that

t = ‖∇xU‖Lp(Ω), λ = λ(t). (173)

We get

‖∇xV ‖Lp(Ω) =
1

λ(t)
, ‖∇xU‖Lp(Ω) =

t

λ(t)
. (174)

But

|Ωλ(t)| =
|∂Ω|
λ(t)

(
1 + η(t)

)−1
, (175)

therefore

‖∇xV ‖Lp(Ω)

|Ωλ(t)|1/p
=

(
1 + η(t)

)1/p
t

|∂Ω|1/p λ(t)1−1/p
, (176)
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and
K(Ω) ‖∇xV ‖Lp(Ω)

|Ωλ(t)|1/p
=

p

p− 1

(
1 + η(t)

)1/p
. (177)

Finally

log

(∫
x∈Ω

e−U dx

)
≥ F2

(
‖∇xU‖Lp(Ω)

)
, (178)

with

F2(t) = a− p

p− 1
ln t− ln

(
1 + η(t)

)
+

p

p− 1

(
1−

(
1 + η(t)

)1/p
)
. (179)

The function F2 is therefore continuous, and

F2(t) = − p

p− 1
ln t+ a+ o(1) when t→ +∞, (180)

which ends the second step of the proof.
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