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Abstract

The purpose of this paper is to present some recent results in two slightly super-
critical problems known as the Brezis-Nirenberg problem in dimension n ≥ 3 and an
equation involving the exponential nonlinearity in dimension n ≥ 2. For that purpose,
we perform a phase plane analysis which emphasizes the common heuristic properties
of the two problems, although more precise estimates can be obtained in some cases by
variational methods.
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1 Introduction

The Brezis-Nirenberg problem






∆u+ |u|p−1u+ λu = 0 in B

u = 0 on ∂B
(1)

in the unit ball B in IRn, n ≥ 3, is a well understood problem. Let

p∗ =
n+ 2

n− 2
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be the critical power and let λ1 be the first eigenvalue of −∆ in B with zero Dirichlet
boundary conditions. Bounded positive solutions, which are all radial by [23], exist in
the following cases, and only in these cases:

(i) Subcritical case: p < p∗ and λ < λ1,

(ii) Critical case: p = p∗ and λ ∈ (λ∗, λ1), where λ∗ = 0 if n ≥ 4 and λ∗ = λ1/4 if
n = 3: see [5, 2, 1, 9, 10],

(iii) Supercritical case: p > p∗ and λ ∈ (λ+
1 , λ1), for some λ+

1 > 0.

Radial solutions form a single branch bifurcating from λ1 ∈ (0, λ1), which is monotone
decreasing if p ≤ p∗ and with an asymptote at λ = λ∗, for some λ∗ ∈ [λ+

1 , λ1) if p ≥ p∗.
Moreover, for p > p∗, there exists a radial singular positive solution if and only if
λ = λ∗, see [27]. Note that other nonradial singular solutions are known to exists.

We are interested in describing the solutions in the slightly supercritical regime:
p = p∗ + ε, ε → 0. The main phenomenon in this regime is the multi-bubbling
phenomenon, which can be explained as follows. The equation

∆U + Up∗ = 0 in IRn

has up to translations and dilations a unique positive solution which is radial:

U(x) = γn

(

1 + |x|2
)−(n−2)/2

∀ x ∈ IRn ,

where γn = [n(n − 2)](n−2)/4. In the limit ε → 0, solutions of (1) turn out to be a
superposition of such solutions. Namely, for any integer k ≥ 1, solutions of the form

u(x) =
k
∑

j=1

Mj U
(

M
2/(n−2)
j x

)

(1 + +o(1)) (2)

can be found by variational methods for ε > 0 and λ > 0 small enough, if n ≥ 4 [12].
The case n = 3 is slightly different and has to be treated separately [14]. The numbers
Mj = Mj(ε) are such that

lim
ε→0

M1(ε) = +∞ and lim
ε→0

Mj+1(ε)

Mj(ε)
= +∞ ∀ j = 1, 2, ... k − 1 .

Here o(1) means that one can find a family of such solutions indexed by ε such that
the remainder term is uniformly small in B as ε → 0. Such a solution will be said to
be a k-bubbles in the rest of this paper for reasons that will be made more clear after
a convenient Emden-Fowler transform. The main feature of such a transformation is
that it separates the scales. The first goal of this paper is to prove by ODE methods
that all radial solutions behave like multi-bubbles in an appropriate limit.

Before going further, let us mention one more difference between the supercritical
and the critical cases. For p = p∗, the bifurcation diagram is monotone decreasing
in L∞(B). For any p = p∗+ε, the same bifurcation diagram is not any more monotone
decreasing but exhibits oscillations: see Fig. 1. The solutions that we are going to
exhibit in the last section actually correspond to “turning points to the right” of the
bifurcation diagram.

In dimension n = 2, the nonlinearity which turns out to be critical is the exponential
nonlinearity. The problem







∆u+ λ eu = 0 in B

u = 0 on ∂B
(3)
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plays a role similar to (1) in the critical case p = p∗ (ε = 0). Before going further, let
us summarize the properties of the bifurcation diagram corresponding to (3). Since the
pioneering work of Joseph and Lundgreen [25], it is well known that the solutions of (3)
have different behaviours depending on the dimension: see [4] for a review of related
results.

(i) If n = 2, the branch of bounded solutions has an asymptote at λ = 0 (see Fig. 2)
and the equation has exactly two solutions for any λ ∈ (0, λ+

1 ). Solutions are
explicit: see Section 3.

(ii) If 3 ≤ n < 10, the branch of bounded solutions has an asymptote at λ = λ∗ > 0
[9, 10] (like in Fig. 2) and the equation has at least one solution for any λ ∈ (0, λ+

1 ),
λ+

1 > λ∗. This branch oscillates around λ = λ∗.

(iii) If n ≥ 10, the branch of bounded solutions has an asymptote at λ = λ∗ > 0 and
the equation has exactly one solution for any λ ∈ (0, λ∗).

All these properties will be easy consequences of the phase plane analysis of Section 3.
Moreover, it is also known that for n > 2, there exists a unique λ = 2(n− 2) for which
there exists a radial singular solution u∗. Of course λ = λ∗ = 2(n−2) is the asymptote
of the branch of bounded radial solutions. This solution is moreover explicit (for n > 2)
and such that

eu∗(x) =
1

|x|2 ,

see [28]. Since we are dealing with radial solutions, Equation (3) is strictly equivalent to







u′′ + n−1
r u′ + λ eu = 0 , r ∈ (0, 1)

u′(0) = 0 , u(1) = 0
(4)

and it is very natural to consider now n as a real parameter. If we look at the bifurcation
diagram, then n = 2 appears as the critical case, while n = 2+ ε, ε > 0 is supercritical.
Note that looking for radial solutions of the equation

|x|N−2−εdiv
(

|x|−(N−2−ε)∇u
)

+ λ eu = 0

in the unit ball of IRN , N ∈ IN, with zero Dirichlet boundary conditions, is exactly
equivalent to (4) with n = 2 + ε. However, we shall rather consider radial solutions
corresponding to the more general supercritical equation







∆pu+ λ eu = 0 in B

u > 0 , u = 0 on ∂B
(5)

with p < p∗ := n, written in radial coordinates. Here we use the standard notation
∆pu := div(|∇u|p−2∇u): see Equation (12) for the corresponding ODE problem. In
the rest of this paper, we shall assume that p > 1. Both p and n will be considered
as real parameters and the small parameter in the slightly supercritical regime is now
ε = p∗ − p = n − p > 0. We are interested in understanding how the supercritical
regime approaches the critical regime, i.e., in what happens when n approaches 2 from
above for p = 2 fixed, or what happens when p → p∗ = n from below, n > 1 fixed.
Equations (1) and (5) turn out to have very similar bifurcation diagrams and both
exhibit a multi-bubbling phenomenon in the slightly supercritical regime, in the sense
that there exist k functions vj , j = 1, 2,... k and a sequence of k parameters µj(ε),
j = 1, 2,... k, for which

lim
ε→0

[µj+1(ε)− µj(ε)] = +∞ ∀j = 1, 2, ... k − 1
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such that there exists a solution u of (5) which takes the form

λ |x|p eu(x) =





k
∑

j=1

vj(log r + µj(ε))



 (1 + o(1)) .

Actually the result holds true for any solution of (5) and any appropriate λ, except that
the convergence in ε only holds for sequences (εn)n∈IN with limn→∞ εn = 0. Moreover,
it is an open question to check if the above k-bubbles asymptotic profile depends on
the sequence or not – in other words if the function vj are uniquely defined for a given
j or not. However, and this is the main difference with the Brezis-Nirenberg problem,
it turns out that these functions differ from each other and for instance the sequence
(max vj)j is strictly decreasing.

The approach we will take in this paper is to consider the two problems as pure
phase plane analysis questions. This makes the analogy between the Brezis-Nirenberg
problem and the case of the exponential nonlinearity easier to understand: the bubbles
appear as natural objects. However, getting precise estimates turns out to be difficult,
so that asymptotic energy expansions and Lyapunov-Schmidt reductions are actually
more accurate, at least in the case of the Brezis-Nirenberg problem. Such an approach
is still to be done in the exponential case. To avoid technicalities, we will not give all
details of the proofs.

In the context of slightly supercritical problems, multi-bubbling has already been
observed in previous works [12, 14, 15, 16] on the Brezis-Nirenberg problem using a
Lyapunov-Schmidt reduction. It is also expected to occur in non-radial frameworks,
with eventually weights, and this is the subject of an ongoing study [13] using also a
Lyapunov-Schmidt reduction. Here, since the problem is reduced to an ODE, we use
more direct methods based on phase plane analysis. By the mean of Emden-Fowler
changes of variables, it is indeed possible to reduce the study of radial solutions of
(1) and (5) to the study of ODE systems whose qualitative behaviour is completely
understood. Moreover, these ODE systems are autonomous in the case of the exponen-
tial nonlinearity, which allows to describe in a very precise way how the supercritical
regime p < p∗ = n approaches the critical case p = p∗. The two main features of the
exponential nonlinearity compared to power laws is that the phase plane analysis is
almost explicit and that the bubbles do not present the same shape. Further references
will be given throughout the rest of the text.

This paper is organized as follows. Using the Emden-Fowler change of variables,
we first show in Section 2 how bubbles appear and why they all have the same height
in the case of the Brezis-Nirenberg problem. Then we will consider the case of the
exponential nonlinearity in Section 3 (but we are not going to prove here that bubbles
have different heights). In the last section, we state some results based on variational
approaches in the case of the Brezis-Nirenberg problem, which are reproduced from
[12], and finally formulate an open problem for the exponential nonlinearity.

2 Phase plane analysis: the Brezis-Nirenberg problem

This section is intended to give an analysis of the multi-bubbling phenomenon in the
case of the Brezis-Nirenberg problem by ODE methods. Throughout this section,
p∗ = n+2

n−2 is the critical exponent and n ≥ 3 is an integer.

2.1 The Emden-Fowler change of variables

Consider the bounded radial solutions of the Brezis-Nirenberg problem in the unit ball
B ⊂ IRn, n ≥ 3, with zero Dirichlet boundary conditions. In terms of r = |x|, x ∈ IRn,
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the solutions are given by







u′′ + n−1
r u′ + |u|p−1u+ λu = 0 , r ∈ (0, 1)

u′(0) = 0 , u(1) = 0
(6)

The Emden-Fowler transformation r = es, u(r) = r−2/(p−1)v(s) changes the problem
into























v′′ + |v|p−1v − β v = −αv′ − λ e2s v , s ∈ (−∞, 0)

v(0) = 0 , lims→−∞ e−2s/(p−1) s v(s) = u(0) := µ > 0 ,

lims→−∞ e−s(p+1)/(p−1) (v′(s)− 2
p−1 v(s)) = 0

(7)

where α = n − 2 − 4/(p − 1) and β = 2 [(n − 2)p − n]/(p− 1)2 are positive whenever
p > (n+ 2)/(n− 2) and p > n/(n− 2) respectively. Let

p = p∗ + ε =
n+ 2

n− 2
+ ε

and consider the slightly supercritical case ε > 0, small. With evident notations,

α(ε) =
(n− 2)2

4 + ε(n− 2)
ε and β(ε) = 2

(n− 2)2(2 + ε(n− 2))

(4 + ε(n− 2))2
.

We are going to describe the behaviour of the solutions in the critical limit ε→ 0 using
a phase plane analysis. This description is quite standard, see for instance [8, 22, 25]
and references therein. The novelty in our approach is to use it to handle the critical
limit ε→ 0.

Let x(s) = v(s), y(s) = v′(s), where v is a solution of (7):







x′ = y

y′ = −(|x|p−1x− β x)− λ e2s x− αy
(8)

supplemented with boundary conditions which are now translated into







x(0) = 0 , lims→−∞ e−2s/(p−1) x(s) = µ > 0

lims→−∞ e−s(p+1)/(p−1) [y(s)− 2
p−1 x(s)] = 0

(9)

Remark

(i) Note that if u is a bounded solution of (6), lims→−∞ y(s)/x(s) = 2/(p− 1) does
not depend on λ.

(ii) Each time the curve s 7→ (x(s), y(s)) =: z(s) crosses the line y = 0 (resp. x = 0)
at some point such that x 6= 0 (resp. y 6= 0), then x′ = 0 (resp. y′ = 0 if p = p∗)
so that z has an horizontal (resp. vertical) tangent line.

(iii) The condition x(0) = 0 determines the value of the shooting parameter µ = µ(λ)
for any given λ.

Let us temporarily write z = zλ,µ to emphasize the dependence of z in the pa-
rameters λ and µ, which show up in (8) and (9). The condition x(0) turns out to be
not very easy to handle, since the parameter µ = µ(λ) has to be adjusted accordingly.
To parametrize the solutions, it is more convenient to proceed as follows. Consider
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(8)-(9) with λ = 1 and take µ > 0 as a shooting parameter at s = −∞. Define
s0(µ) := inf{s ∈ IR : x(s) = 0}. If s0(µ) is finite, then

zλ,µ(λ)(s) = z1,µ(s− s0(µ)) if and only if λ = e2s0(µ) .

The above invariance is actually a well known fac. Namely the branch of the solutions
of (6) can similarly be parametrized as follows [30, 3]. Let ua be the solution in IR+ of







u′′a + n−1
r u′a + |ua|p−1ua + ua = 0 , r ∈ IR+

u′a(0) = 0 , ua(0) = a > 0

and consider its first zero ρ = ρ(a): ua(ρ) = 0, ua(r) > 0 for any r ∈ (0, ρ). Then

u(r) = ρ−2/(p−1)ua(r ρ)

is the unique solution of (6) with u(0) = a ρ−2/(p−1) and λ = ρ2. Note that the
uniqueness [31, 26, 32] of the solutions of (1) in turn means that a 7→ ρ(a) is monotone
decreasing.

2.2 The critical case

From [5], it is known that positive bounded solutions of (1) with p = p∗, ε = 0, exist
for any λ ∈ (λ∗, λ1), where λ1 is the first eigenvalue of −∆ in the unit ball of IRn with
zero Dirichlet boundary conditions, and λ∗ = 0 if n ≥ 4, λ∗ = λ1/4 if n = 3. The
study done in [3] (also see [18]) shows that for any given λ ∈ (λ∗, λ1), solutions of (8)
with x(0) = 0 and y(0) = −γ < 0 exhibit only three possible behaviours. In terms of
the original coordinates, these solutions are given by







u′′ + n−1
r u′ + |u|p−1u+ λu = 0 , r ∈ (0, 1)

u(1) = 0 , u′(1) = −γ
(10)

Define the energy by

E(s) =
1

2
|y(s)|2 +

1

p+ 1
|x(s)|p+1 − β

2
|x(s)|2

and consider its limiting value

Eγ, λ = lim
s→−∞

E(s) .

If λ ∈ (λ∗, λ1) is fixed, then there exists a positive γ∗(λ) such that

(i) If γ ∈ (0, γ∗(λ)), then Eγ, λ < 0 and the solution of (10) is a positive solution of
(6), which is singular at the origin.

(ii) If γ ∈ (γ∗(λ),+∞), then Eγ, λ > 0 and the solution of (10) is a sign-changing
solution of (6), which is singular and oscillating at the origin (it changes sign
infinitely many times).

(iii) If γ = γ∗(λ), then Eγ, λ = 0 and the solution of (10) is the unique positive bounded
solution of (6).

2.3 The slightly supercritical case

Let λ ∈ (λ∗, λ1) and consider γ < γ∗(λ) so that Eγ, λ < 0. Consider T > 0 fixed such
that on (−T, 0) the solution z0 = (x0, y0) of (8) in the critical case (p = p∗, ε = 0)
is such that y0 changes sign kT times. Take ε > 0, small enough and consider the
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solution of (8) for p = p∗ + ε, with ε small enough so that y also changes kT times on
(−T, 0). The number kT can be taken arbitrarily large for T large enough, since z0 is
asymptotically periodic as s→ −∞.

According to Merle and Peletier [27], for any ε > 0 given, there exists a unique λ∗(ε)
such that (6) has a positive singular radial solution. Moreover, λ∗(ε) is the asymptote
of the bifurcation curve corresponding to large L∞ norms (consistently, we shall write
λ∗ = λ∗(0) in the critical case). Therefore, if λ 6= λ∗(ε), either the solution of (6)
corresponding to u is bounded or it has to change sign and the curve s 7→ z(s) crosses
the axis x = 0 for some y > 0. Let k be the number of sign changes of y before x becomes
negative. It is clear that k can be taken arbitrarily large and, as a consequence, larger
than kT .

For ε > 0, by increasing γ, we may find a solution such that x is positive for any
s ∈ IR− and y changes sign at least k times. Such a solution is a multi-bubbles solution
in the limit ε→ 0.

Theorem 1 Assume that n ≥ 3, p∗ = n+2
n−2 . With the above notations, for any ε > 0

small enough, for any integer κ ≥ 1, if λ ∈ (λ∗, λ1) and λ 6= λ∗(ε), then there exists a
solution z = (x, y) of (8) with p = p∗ + ε, which can be written as

x(s) = xλ
0 (s) +

k
∑

i=1

x∗(s+ si(ε)) + o(1) (11)

for some k ≥ κ, where xλ
0 = x0 is the bounded solution corresponding to (8) in the

critical case (p = p∗, ε = 0) with γ = γ∗(λ) and x∗ is the unique positive solution of
the asymptotic problem

x′′ + |x|p∗−1x− 1

4
(n− 2)2 x = 0

such that x′(0) = 0 and with zero energy: 1
2 |x′|

2 + n−2
2n |x|2n/(n−2)− 1

8 (n−2)2 |x|2 = 0.
By o(1), we mean that the convergence holds uniformly on (−∞, 0) 3 s. This implies
that the difference of the corresponding solution u of (6) and of its asymptotic form,
namely

r−2/(p−1)

[

xλ
0 (log r) +

k
∑

i=1

x∗(log r + si(ε))

]

also uniformly converges to 0 in the unit ball.
Moreover, in dimension n ≥ 4, if we consider the case where λ = λ(ε) > 0 is itself

a function of ε such that limε→0 λ(ε) = 0, then for p = p∗ + ε the solution x
λ(ε)
0 of







x′′ + |x|p−1x− β(ε)x + λ(ε) e2s x = 0

x(0) = 0 , x′(0) = −γ∗(λ(ε))

uniformly converges to x∗ in IR−.

Proof. We only give the main steps at a heuristic level since detailed computations turn
out to be very tedious. The solutions that we consider correspond to ε > 0 unless it is
specified, and explicitly depend on ε. The fact that k can be chosen arbitrarily large
follows from the estimate for kT (see [3] for more details). Then the curve z necessarily
converges to the zero energy curve for the asymptotic problem, except for the first
bubble, which allows to characterize x∗. The proof of these facts goes as follows.

First of all, take ε > 0 small enough in order that for T > 0 given, large enough,
the solution is such that y changes sign κ = kT times on (−T, 0) (note again that κ can
be chosen arbitrarily large by taking T large enough). Actually, y changes sign k times
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for some k ≥ κ before x becomes negative. Increase now γ = −y(0). From [3] and
after eventually decreasing further ε > 0, it is clear that there is an upper bound on γ
for which the above properties hold true. This simply means that there is a point of
the curve z corresponding to some s = s(ε) → −∞ as ε→ 0, which converges to (0, 0):
limε→0 z(s(ε)) = (0, 0). What one has to prove is that there are at least k different
such points, which all converge to (0, 0) as ε→ 0.

By energy methods as in [3], it is immediate that for s̃ = s̃(ε) such that x(s̃(ε)) ≥ 0
and y(s̃(ε)) = 0, then limε→0 x(s̃(ε)) = 0 if s̃(ε) ≥ s(ε). This also holds true for
s̃(ε) < s(ε) as can be shown by contradiction, by taking the limit case ε→ 0.

The last statement on the convergence of x
λ(ε)
0 to x∗ is easy. ut

As an easy corollary of the above proof, we can state the following

Corollary 2 Assume that n ≥ 3. With the above notations, the range in λ for which
multi-bubble solutions of (1) with an arbitrarily large number of bubbles exist is actually
(λ∗, λ1) in the limit ε→ 0, ε > 0.

Proof. It is an easy consequence of (11). Details are left to the reader. Note that
the solutions take a slightly more general form than in (2), since the first bubble for a
λ > λ∗ corresponds to a positive solution of the critical case p = p∗, for the same value
of λ. ut

In other words, the bifurcation diagram in L∞(B) is asymptotically oscillating
within its maximal values, in the limit ε→ 0, ε > 0 and for large L∞(B)-norms of the
solutions.

Remark

(i) The function x∗ is explicit:

x∗(s) = γn

(

es + e−s
)−(n−2)/2

∀ s ∈ IR ,

where γn = (n (n − 2))(n−2)/4. The uniqueness is a consequence of the fact that
x∗(0) = (n(n − 2)/4)(n−2)/4 and x∗′(0) = 0, which is itself a consequence of the
boundary conditions and the fact that x∗ has zero energy.

(ii) In dimension n = 3, x
λ(ε)
0 converges to some function x∗0 6= x∗, which is also explicit

[5, 3]. This case is very special and x∗0 has to do with Robin’s function [19].

(iii) For λ = λ(ε) ↘ 0, a much more precise statement can actually be given using a
Lyapunov-Schmidt reduction: see [12, 14] and Section 4 of this paper.

The fact that there are k-bubbles for any k ≥ 1 in the limit ε→ 0, ε > 0 is a delicate
issue at the level of the phase space analysis, since it involves a good understanding of
the mechanism responsible for the change of the number of nodes in the singular limit
ε→ 0. On the contrary, such a result will be one of the main features of the variational
methods, see Section 4.

The assumption λ 6= λ(ε) is clearly technical and should be removable to the price
of some further analysis.

An interesting feature of the Brezis-Nirenberg problem is that all bubbles except the
first one are the same, up to translations. This is somehow standard in such multi-scales
concentration problems. As we will see in the next section, the case of the exponential
nonlinearity differs on that point. See [13] for further details.
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3 Phase plane analysis: the exponential nonlinearity

This section is devoted to the equation

∆pu+ λ eu = 0 (5)

in H1
0 (B), in the slightly supercritical case ε = p∗ − p > 0, 1 < p < p∗, where the

critical parameter is now
p∗ = n .

3.1 The generalized Emden-Fowler change of variables

Since (5) is invariant under rotations, for bounded solutions it is possible to restrict
the study to the case of radial solutions. See [11] and [7] for some recent result on
symmetry properties of the solutions. Let u be a solution of







∆p,nu+ λ eu = 0 , r ∈ (0, 1)

u(0) > 0 , du
dr (0) = 0 , u(1) = 0

(12)

where

∆p,nu :=
1

rn−1

d

dr

(

rn−1

∣

∣

∣

∣

du

dr

∣

∣

∣

∣

p−2
du

dr

)

=

∣

∣

∣

∣

du

dr

∣

∣

∣

∣

p−2(

(p− 1)
d2u

dr2
+
n− 1

r

du

dr

)

(at least if du
dr 6= 0) is the radial version of ∆p in dimension n. Here we abusively use

the same notations for the solutions of (5) and (12). As long as we consider solutions
of (12), it is possible to see p and n as two independent real parameters. Let r = es,
s ∈ (−∞, 0] and define v(s) := u(r). Then (12) is equivalent to











(p− 1)|v′|p−2v′′ + (n− p)|v′|p−2 v′ + λ ev+ps = 0 , s ∈ (−∞, 0)

lim
s→−∞

v(s) > 0 , lim
s→−∞

e−s v′(s) = 0 , v(0) = 0

where v′ = dv
ds . Note that the change of variables means that

lim
s→−∞

v(s) = u(0) .

The equation for v can be reduced to an autonomous ODE system as follows. Let

x(s) = λ ev(s)+ps and y(s) = |v′(s)|p−2 v′(s) .

Then






x′ = x (v′ + p)

y′ = (p− 1) |v′|p−2 v′′

and (12) is finally equivalent to the system










x′ = x (|y|p∗−2 y + p) , x(0) = λ

y′ = (p− n) y − x , lim
s→−∞

e−s |y(s)|p∗−2 y(s) = 0
(13)

where p∗ = (1− 1
p )−1 is the Hölder conjugate of p, so that

y = |v′|p−2 v′ ⇐⇒ v′ = |y|p∗−2 y .

As in the case of the Brezis-Nirenberg problem, the change of coordinates is somewhat
classical, see for instance [8, 25], at least for p = 2. The novelty of our approach is to
use it in order to understand the limit n− p = ε→ 0, ε > 0.
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3.2 Parametrization of the solutions

The behaviour of the solutions easily follows from the study of the vector field and a
linearization around the two fixed points: P− = (0, 0) and P+ = pp−1(n− p,−1). The
linearization of (13) at P− is

(

X

Y

)′

=

(

p 0
−1 −(n− p)

)(

X

Y

)

with eigenvalues p and −(n− p), and, at P+,

(

X

Y

)′

=

(

0 p (n− p)/(p− 1)
−1 −(n− p)

)(

X

Y

)

with eigenvalues

1

2

√
n− p

(

−√n− p± i
√

p (p+ 3)/(p− 1)− n
)

.

This proves the

Lemma 3 Assume that p < n < p (p+ 3)/(p− 1). Then the following properties hold:
(i) P− is hyperbolic and P+ is elliptic.
(ii) Any trajectory of (13) is such that x(s) does not change sign. Any trajectory with
x > 0 enters the lower quadrant corresponding to x > 0, y < 0.
(iii) P+ (resp. P−) is attracting all trajectories with x > 0 as s → +∞ (resp. all
bounded trajectories with x > 0 as s→ −∞).
(iv) There exists a bounded trajectory s 7→ (x(s), y(s)) such that

lim
s→±∞

(x(s), y(s)) = P± .

This heterocline trajectory is unique, up to any translation in s.

Note that for n > p (p+ 3)/(p− 1), to the linearization of (13) at P+ correspond two
negative eigenvalues, so that the trajectory connecting P− to P+ is unique, up to any
translation in s, and monotone in y. As a consequence, we recover for instance that
for p = 2, n ≥ 10, the branch of the solutions of (5) in L∞(Ω) is monotone. From now
on we assume that p ≤ n < p (p+ 3)/(p− 1). Let (x̄, ȳ) be the unique trajectory such
that lims→−∞(x̄(s), ȳ(s)) = P− and x̄(0) = maxs∈IR x̄(s). In order to emphasize the
dependence in ε, we shall write (x̄ε, ȳε) whenever needed.

Lemma 4 Assume that p ≤ n < p (p + 3)/(p − 1). For a given λ, to any solution v
of (12) corresponds a unique s0 such that

λ ev(s)+ps = x̄(s+ s0)

for any s ≤ 0. Reciprocally, for any λ ∈ (0, λ+
1 ], where λ+

1 := maxs∈IR x̄(s) = x̄(0), the
equation x̄(s0) = λ has at least one solution and

v(s) = log

(

1

λ
x̄(s+ s0)

)

− p s

is a solution of (12).

Note that with the change of variables s = t− s0,

v(t− s0) = log

(

x̄(t)

x̄(s0)

)

− p t+ p s0 ∀ t ∈ (−∞, s0) .
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The corresponding solution u of (5) is fully determined by λ = x̄(s0), u
′(0) = 0 and

u(0) = lim
t→−∞

v(t− s0) = lim
t→−∞

log

(

x̄(t) e−p t

x̄(s0) e−p s0

)

.

The parametrization in Lemma 4 is a straightforward consequence of the Emden-
Fowler change of coordinates. The next result only involves an elementary phase plane
analysis.

Lemma 5 Let λ∗ = pp−1(n− p). Assume that p < n < p (p+ 3)/(p− 1). There exists
two sequences (λ−k )k≥1 and (λ+

k )k≥1 such that:
(i) (λ−k )k≥1 is increasing and limk→+∞ λ−k = λ∗.
(ii) (λ+

k )k≥1 is decreasing and limk→+∞ λ+
k = λ∗.

(iii) Equation (12) has no solutions if λ > λ+
1 , 2k − 1 solutions if λ = λ+

k or λ ∈
(λ−k−1, λ

−
k ) with the convention λ−0 = 0, and 2k solutions if λ = λ−k or λ ∈ (λ+

k+1, λ
+
k ),

k ≥ 1.
(iv) Equation (12) has infinitely many solutions if and only if λ = λ∗.

Assume next that p = n and let λ+
1 := sups∈IR x̄(s). Then Equation (12) has no

solutions if λ > λ+
1 , one and only one solution if λ = λ+

1 and two and only two solutions
if λ ∈ (0, λ+

1 ).

The supercritical case (see Figs. 1 and 2) exhibits a behaviour similar to the one of the
supercritical Brezis-Nirenberg problem, while in the critical case p = n, (13) becomes
an Hamiltonian system:

x′ = x (|y|p∗−2y + p) , y′ = −x

which is explicitely solvable in the case p = 2: u(r) = 2 log
(

a2+1
a2+r2

)

is a solution of (5)

for any a > 0 such that λ = 8 a2

(a2+1)2 .

3.3 Description of the critical limit

This regime corresponds to the limit ε = n− p→ 0, ε > 0 and it is clearly the delicate
part of our ODE approach. We shall only expose the crucial steps and refer to [13] for
complete proofs.

For any ε > 0, define by sk(ε) the sequence of the points of local maxima of x̄ε.By
definition of (x̄ε, ȳε), s1(ε) = 0 for any ε > 0 not too big. It is then easy to check that

Lemma 6 For any k ≥ 1,

lim
ε→0

[sk+1(ε)− sk(ε)] = +∞ .

To study the critical limit, we emphasize the dependence in ε. Let λε,+
k = x̄ε(sk(ε)).

According to Lemma 4, (λε,+
k )k≥1 is a positive decreasing sequence. Define λ̄+

k :=

limε→0 λ
ε,+
k .

It is actually not clear that for any sequence (εi)i∈IN with εi > 0, limi→∞ εi = 0, the
limit of λεi,+

k is unique and well defined so that one should consider a special sequence
(εi)i∈IN and eventually extract subsequences. For the sake of simplicity, we will speak
of “the limit ε→ 0” in the rest of this section, except in the statement of Theorem 10.

Lemma 7 For any k ≥ 1, λ̄+
k > 0 and λ̄+

1 = λ0,+
1 . Moreover (λ̄+

k )k∈IN is a strictly
decreasing sequence.

Proof. The general strategy is the following. Prove first that the energy decays at
most at an exponential rate proportional to ε and prove that the angular velocity with
respect to P+ is bounded from below by a constant which is also proportional to ε.
This is actually not true a priori and a much more detailed analysis is required for any
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k ≥ 2. This proves that λ̄+
k is positive for any k ≥ 1: we shall say that multi-bubbling

occurs. Arguing by contradiction, one can then show that the energy has to decay so
that the sequence (λ̄+

k )k≥1 is strictly decreasing: we shall say that bubbles dont have
the same “height”. We refer to [13] for further details, which are quite lengthy. ut

Corollary 8 For any k ≥ 1, as ε→ 0,

x̄ε(s) →
k
∑

j=1

xj(s− sj(ε))

uniformly on any interval (−∞, a(ε)) ∈ IR such that sk(ε) < a(ε) < sk+1(ε) with
lim infε→0(sk+1(ε)− a(ε)) = lim infε→0(a(ε)− sk(ε)) = +∞.

Let λ ∈ (0, λ̄+
k ) and define s±0,k(λ) ∈ IR as the two solutions of xk(s±0,k(λ)) = λ,

±s±0,k(λ) > 0, where xk is the unique solution of

x′ = x (|y|p∗−2y + p) , y′ = −x

such that xk(0) = λ̄+
k and yk(0) = −pp−1. With these notations, (x1, y1) = (x̄0, ȳ0)

but (xk, yk) 6= (x̄0, ȳ0) for any k ≥ 2. A careful rewriting of the Emden-Fowler change
of variables then gives the following result.

Lemma 9 Let λ ∈ (0, λ̄+
k ] for some k ≥ 1. Then there exists two solutions u± of (12)

which take the form

λ rp eu±(r) =





k
∑

j=1

xj

(

log r + sk(ε)− sj(ε) + s±0,k(λ)
)



 (1 + o(1)) ∀ r ∈ (0, 1)

as ε→ 0.

This actually amounts to say that there is a k-bubbles solution. Note that we have to
assume that ε > 0 is small enough so that with the notations of Corollary 8,

a(ε) > sk(ε) + s±0,k(λ) .

Theorem 10 Let ε = n − p > 0 and consider any integer k ≥ 1. With the above
notations, assume that λ ∈ (0, λ̄+

k ). For ε > 0 small enough, consider a sequence
(εi)i∈IN such that 0 < εi < ε for any i ∈ IN and limi→+∞ εi = 0. Then, up to the
extraction of a subsequence, there exist k functions vj , j = 1, 2,... k, a sequence of k
parameters µj(εi), i ∈ IN, j = 1, 2,... k for which

lim
i→+∞

(µj+1(εi)− µj(εi)) = +∞ ∀j = 1, 2, ... k − 1

such that any solution uεi of (5) with ε = εi has the following property:

λ |x|p euεi (x) =





k
∑

j=1

vj

(

log |x|+ µj(εi)
)



 (1 + o(1)) as i→ +∞

uniformly on B.

4 Lyapunov-Schmidt reduction: the Brezis-Nirenberg

problem

For p = p∗ + ε, p∗ = n+2
n−2 , and a certain range λ = o(1), depending on ε, one can see

bubbling positive solutions by variational methods, or, to be precise, by a Lyapunov-
Schmidt reduction. The method goes back to [20] but has been implemented in the
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framework of the Brezis-Nirenberg problem only recently [12]. There are actually towers
of bubbles constituted by a superposition of bubbles of different blow-up orders: given
any number k ≥ 1, there is an ε-dependent range for λ for which there exist solutions
of the form

uε(x) = γn

k
∑

j=1

Mj

(

1 +M
4/(n−2)
j |x|2

)−(n−2)/2

( 1 + o(1) ) as x→ 0 , (2)

where Mj → +∞ and Mj = o(Mj+1) for all j. This is in strong contrast with the case
in which ε = 0 and one lets λ ↓ 0, or λ = 0 and ε ↑ 0, where only a single bubble is
present, as established by Brezis and Peletier [6] (also see [29, 24]). For simplicity in
the exposition, we restrict ourselves in this section to the case n ≥ 5. The following
result has been established in [12].

Theorem 11 [12] Assume n ≥ 5 and p = p∗ + ε, p∗ = n+2
n−2 . Then, given an integer

k ≥ 1, there exists a number µk > 0 such that if µ > µk and

λ = µ ε
n−4

n−2 ,

then there are constants 0 < α−j < α+
j , j = 1, . . . k which depend on k, n and µ and

two solutions u±ε of Problem (1) of the form (2) with Mj = α±j ε
1

2
−j . In (2), o(1) → 0

means that the convergence holds uniformly on B as ε→ 0.

Proof. For completeness we shall sketch the proof of Theorem 11 along the lines of [12].
The problem of finding radial solutions u to Problem (1) corresponds to that of solving
the boundary value problem

u′′ + n−1

r
u′ + up+ε + λu = 0 , u′(0) = 0 , u(1) = 0 . (14)

Here and in the rest of this section we fix p∗ = n+2
n−2 and we write simply u = u(r) with

r = |x|. We transform the problem by means of the following change of variable

v(s) =
(

2

p∗−1

)−2/(p−1)
r2/(p∗−1) u(r) with r = e−(p∗−1) s/2 , s ∈ (0,+∞) , (15)

a variation of the so-called Emden-Fowler transformation, first introduced in [21]. Note
that this is not exactly the change of variables introduced in Section 2.1. Problem (14)
then becomes











v′′ − v + eεs vp +
(

p∗−1
2

)2

λ e−(p∗−1)s v = 0 on (0,∞) ,

v(0) = 0 , v > 0 , v(s) → 0 as s→ +∞ .

(16)

The energy functional associated to Problem (16) is given by

Eε(v) = Iε(v)−
1

8
(p∗ − 1)2 λ

∫ ∞

0

e−(p∗−1)s|v|2 ds (17)

with

Iε(v) =
1

2

∫ ∞

0

|v′|2 ds+
1

2

∫ ∞

0

|v|2 ds− 1

p+ 1

∫ ∞

0

eεs|v|p+1 ds .

Let us consider the unique positive solution V to the problem






















V ′′ − V + Vp∗ = 0 on (−∞,∞)

V ′(0) = 0

V > 0 , V(s) → 0 as s→ ±∞
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This solution is nothing but the one given by the Emden-Fowler transformation (15)
of the radial positive solution of ∆v + vp∗ = 0 given by

V(s) =

(

4n

n− 2

)

n−2

4

e−s
(

1 + e−
4

n−2
s
)−n−2

2

.

Let us consider points 0 < ξ1 < ξ2 < · · · < ξk . We look for a solution of (16) of the
form

v(s) =

k
∑

i=1

(

V(s− ξi) + πi

)

+ φ

where φ is small and πi(s) = −V(ξi) e
−s. The correction πi is meant to make the

ansatz satisfy the Dirichlet boundary conditions. A main observation is that v(s) ∼
∑k

i=1 V(s − ξi) solves (16) if and only if going back in the change of variables, with
γn = s(n (n− 2))(n−2)/4,

u(r) ∼ γn

k
∑

i=1

(

1 + e
4ξi

n−2 r2
)−(n−2)/2

eξi

solves (14). Therefore the ansatz given for v provides (for large values of the ξi’s), a
bubble-tower solution for (1) of the form (2) with Mi = eξi .

Let us write

Vi(s) = V(s− ξi) , Vi = Vi + πi , πi(s) = −V(ξi) e
−s , V =

k
∑

i=1

Vi . (18)

It is easily checked that Vi is nonnegative on IR+. We shall work out asymptotics
for the associated energy functional evaluated at the function V , assuming that the
numbers ξi take the form

ξ1 = − 1
2 log ε+ log Λ1 ,

ξi+1 − ξi = − log ε− log Λi+1 , i = 1, . . . k − 1 ,
(19)

where the Λi’s are positive parameters. For notational convenience, we also set Λ =
(Λ1,Λ2, . . .Λk). With this choice the energy Eε defined by (17) can be expanded as
follows.

Lemma 12 Let n ≥ 5. Fix a small number δ > 0 and assume that

δ < Λi < δ−1 for all i = 1, . . . k . (20)

Assume also that λ = µ ε
n−4

n−2 for some µ > 0. Let V be given by (18). Then, with the
choice (19) of the points ξi, there are positive numbers ai, i = 0, . . . 5 depending only
on n, such that the following expansion holds:

Eε(V ) = k a0 + εΨk(Λ) +
k2

2
a3 ε log ε+ a5 ε+ ε θε(Λ) , where (21)

Ψk(Λ) = a1 Λ−2
1 − k a3 log Λ1 − a4 µΛ

−(p∗−1)
1 +

k
∑

i=2

[(k−i+1) a3 log Λi − a2 Λi] ,

and as ε→ 0, the term θε(Λ) converges to 0 uniformly and in the C1-sense on the set
of Λi’s satisfying contraints (20).
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Indeed, if there is a solution of (16) of the form v = V + φ, with V as in the
statement of the lemma, and φ small, it is natural to expect that this occurs if the
vector Λ = (Λ1, . . .Λk) corresponds to a critical point of the function Ψk. This is in
fact true, as it follows from a Lyapunov-Schmidt reduction procedure. Before, let us
analyze the critical points of Ψk:

Ψk(Λ) = ϕµ
k (Λ1) +

k
∑

i=2

ϕi(Λi) ,

ϕµ
k (s) = a1 s

−2 − k a3 log s − a4 µ s
−(p∗−1) and ϕi(s) = (k − i+ 1) a3 log s− a2 s .

Let us observe that there is a number µk > 0 such that ϕµ
k has exactly two critical

points: a nondegenerate maximum, s+k (µ), and a nondegenerate minimum, s−k (µ). On
the other hand, each of the functions ϕj has exactly one nondegenerate critical point,
a maximum,

s = (k − j + 1) b3, for each j = 2, . . . k ,

with b3 is a given positive constant depending on n.

Lemma 13 Assume that µ > µk. Then, the function Ψk(Λ) has exactly two critical
points, given by

Λ± = ( s±k (µ), (k − 1) b3, (k − 2) b3, . . . b3 ) .

These critical points are nondegenerate.

Let us consider again points 0 < ξ1 < ξ2 < . . . ξk , which are for now arbitrary. We
keep the notations Vi, Vi and V defined by (18). Additionally we define

Zi(s) = V ′i(s)− V ′i(0) e−s , i = 1, . . . k

and consider the problem of finding a function φ for which there are constants ci,
i = 1, . . . k, such that, in (0,∞)











































−(V+φ)′′+ (V+φ) − eεs(V+φ)p
+− λ ( p∗−1

2
)
2
e−(p∗−1)s(V+φ) =

k
∑

i=1

ci Zi ,

φ(0) = 0 , lim
s→+∞

φ(s) = 0 ,

∫ ∞

0

Zi φ ds = 0 for all i = 1, . . . k .

(22)

This problem turns out to be solvable for points ξi chosen in a convenient range. After
this, the original problem becomes reduced to adjusting the points ξi so that ci = 0 for
all i.

In order to solve Problem (22), let us consider the linearized operator around V
defined as

Lεφ = −φ′′ + φ − p eεsV p−1φ − λ ( p∗−1

2
)
2
e−(p∗−1)sφ .

Then Problem (22) can be rewritten as











































Lεφ = Nε(φ) + Rε +

k
∑

i=1

ci Zi in (0,∞) ,

φ(0) = 0, lim
s→+∞

φ(s) = 0 ,

∫ ∞

0

Zi φ ds = 0 for all i = 1, . . . k .

(23)
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where

Nε(φ) = eεs
[

(V + φ)p
+ − V p − p V p−1φ

]

and (24)

Rε = eεs[V p − V p∗ ] + V p∗ [eεs − 1] + [V p∗ −
k
∑

i=1

V p∗

i ] + λ ( p∗−1

2
)
2
e−(p∗−1)s V .

The operator Lε turns out to be boundedly invertible under the orthogonality con-
ditions, for an appropriate norm which depends on the points ξi. For a small, fixed
positive number σ and a function ψ defined on (0,∞), let us set

‖ψ‖∗ = sup
s>0

(

k
∑

i=1

e−σ|s−ξi|

)−1

|ψ(s)| . (25)

Consider the linear problem of, given a function h, finding φ such that










































Lεφ = h(s) +

k
∑

i=1

ciZi in (0,∞) ,

φ(0) = 0 , lim
s→+∞

φ(s) = 0 ,

∫ ∞

0

Zi φ ds = 0 for all i = 1, . . . k ,

(26)

for certain constants ci.

Lemma 14 There exist positive numbers ε0, δ0, δ1, R0, and a constant C > 0 such
that if the scalar λ and the points 0 < ξ1 < ξ2 < · · · < ξk satisfy

R0 < ξ1, R0 < min
1≤i<k

(ξi+1 − ξi) , ξk <
δ0
ε
, λ < δ1 , (27)

then for all 0 < ε < ε0 and all h ∈ C[0,∞) with ‖h‖∗ < +∞, Problem (26) admits a
unique solution φ =: Tε(h). Besides,

‖Tε(h)‖∗ ≤ C ‖h‖∗ and |ci| ≤ C ‖h‖∗ .

Now we are ready to solve Problem (22). We shall do this after restricting conve-
niently the range of the parameters ξi and λ. Let us consider for a number M large
but fixed, the following conditions:







ξ1 >
1
2 log(Mε)−1 , log(Mε)−1 < min1≤i<k(ξi+1 − ξi) ,

ξk < k log(Mε)−1 , λ < M ε
n−4

n−2 .

(28)

Useful facts that we easily check is that under relations (28), Nε and Rε defined by (24)
satisfy for all small ε > 0 and ‖φ‖∗ ≤ 1

4 the estimates:

‖Nε(φ)‖∗ ≤ C ‖φ‖p∗

∗ and ‖Rε‖∗ ≤ C ε1−σ , (29)

provided that σ is chosen small enough.

Lemma 15 Assume that relations (28) hold. Then there is a constant C > 0 such that,
for all ε > 0 small enough, there exists a unique solution φ = φ(ξ) to problem (22)
which besides satisfies

‖φ‖∗ ≤ C ε1−σ .

Moreover, the map ξ 7→ φ(ξ) is of class C1 for the ‖ · ‖∗-norm and

‖Dξφ‖∗ ≤ C ε1−σ .
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Proof. We will only prove that the existence statement of (22) is equivalent to solving
a fixed point problem. Indeed φ is a solution of (22) if and only if

φ = Tε(Nε(φ) +Rε) =: Aε(φ) .

Thus it is sufficient to prove that the operator Aε defined above is a contraction in a
proper region. Let us consider the set

Fr = {φ ∈ C[0,∞) : ||φ||∗ ≤ r ε1−σ}

with r a positive number to be fixed later. From Proposition 14 and (29), we get

‖Aε(φ)‖∗ ≤ C‖Nε(φ) +Rε‖∗ ≤ C[(r ε)p∗ + ε1−σ] < r ε1−σ

for all small ε, provided that r is chosen large enough, but independent of ε. Thus Aε

maps Fr into itself for this choice of r. Moreover, Aε turns out to be a contraction
mapping in this region. This follows from the fact that Nε defines a contraction in the
‖ · ‖∗-norm, which can be proved in a straightforward way. This concludes the proof.ut

Now let us fix a large number M and assume that conditions (28) hold true for
ξ = (ξ1, . . . ξk) and λ. According to the previous results, our problem has been reduced
to that of finding points ξi so that the constants ci which appear in (23), for the solution
φ given by Lemma 15, are all zero. Thus we need to solve the system of equations

ci(ξ) = 0 for all i = 1, . . . k . (30)

If (30) holds, then v = V + φ will be a solution to (22) with the desired form. This
system turns out to be equivalent to a variational problem, which we introduce next.

Let us consider the functional

Iε(ξ) = Eε(V + φ) ,

where φ = φ(ξ) is given by Lemma 15 and Eε is defined by (17). We claim that
solving system (30) is equivalent to finding a critical point of this functional. In fact,
integrating (22) against Zi and using the definition of Eε and φ, we obtain

DEε(V + φ)[Zi] = 0 for all i = 1, . . . k . (31)

Now, it is easily checked that

∂

∂ξi
(V + φ) = Zi + o(1) ,

with o(1) → 0 in the *-norm as ε → 0. We can decompose each of the o(1) terms
above as the sum of a small term which lies in the vector space spanned by the Zi’s,
and a function η with

∫ +∞

0 Zi η ds = 0 for all i. Again, from equation (22), we get
DJε(V + φ)[η] = 0. What we have shown is that system (31) is equivalent to

∇Iε(ξ) = 0 .

The following fact is crucial to find critical points of Iε.

Lemma 16 Assume that σ < 1
2 in the definition of the ∗-norm. Then the following

expansion holds
Iε(ξ) = Eε(V ) + o(ε) ,

where the term o(ε) is uniform in the C1-sense over all points satisfying constraint (28),
for given M > 0.
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Proof of Theorem 11. Let us assume µ > µk. We need to find a critical point of Iε(ξ).
Consider the change of variable ξ = ξ(Λ)

ξ1 = −1

2
log ε− log Λ1 , ξi+1 − ξi = − log ε− log Λi , i ≥ 2 ,

where the Λi’s are positive parameters, and define Λ := (Λ1, . . .Λk). Thus it suffices to
find a critical point of

Φε(Λ) ≡ ε−1∇Iε(ξ(Λ)) .

From the above lemma and the decomposition (21) given in Lemma 12, which actually
holds with the o(ε) term in the C1 sense uniformly on points satisfying constraints (28),
we obtain

∇Φε(Λ) = ∇Ψk(Λ) + o(1) ,

where o(1) → 0 uniformly on points Λ satisfying (20). We assume that for our fixed
µ > µk, the critical points Λ± of Ψk in Lemma 16 satisfy this constraint. Since the
critical points Λ± are nondegenerate, it follows that the local degrees deg (∇Ψk,N±, 0)
are well defined and they are non-zero. Here N± are arbitrarily small neighborhoods
of the points Λ± in IRk. We also conclude that deg (∇Iε,N±, 0) 6= 0 for all sufficiently
small ε. Hence we may find critical points Λ±ε of Φε with

Λ±ε = Λ± + o(1), lim
ε→0

o(1) = 0 .

For ξ±ε = ξ(Λ±ε ), the functions v± = V + φ(ξ±ε ) are solutions of Problem (16). From
the equation satisfied by φ, (22), and its smallness in the ∗-norm, we derive that
v = V (1 + o(1)), where o(1) → 0 uniformly on (0,∞). Further, if we simply set
ξ± ≡ ξ(Λ±), then it is also true that

v±(s) =
k
∑

1=1

V(s− ξ±i ) (1 + o(1)) ,

again with o(1) → 0 uniformly on (0,∞). Finally, if we go back in the change of
variables (15) to a solution of (1), the explicit form of the parameters Λ± found in
Lemma 13 provides the expression (2) for the solutions. This concludes the proof of
Theorem 11. ut

5 Conclusion

The variational approach for the Brezis-Nirenberg problem raises plenty of questions
when the domain is not a ball. For a review of recent results in this direction see [17].

The Brezis-Nirenberg problem and the equation corresponding to the case of the ex-
ponential nonlinearity share very similar properties in the slightly supercritical regime
when they are studied by phase plane methods. We have shown that both problems
have the multi-bubbling property, which means that in the phase space, the solutions
make an arbitrarily large number of “turns”. This property is reflected by the “oscil-
lations” of the bifurcation diagram.

However, the results for the exponential nonlinearity are still quite preliminary. The
uniqueness of the “heights” of the bubbles and of course their characterization is still
unknown. This might be tackled by variational methods as for the Brezis-Nirenberg
problem (and eventually extended to domains with more general geometries than a
ball) but for the moment the problem is still completely open.
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Figures
u(0)

λ
p = 2∗ + ε , ε→ 0

Figure 1: Bifurcation diagrams of the Brezis-Nirenberg problem (1) in the critical and slightly supercritical
cases.

u(0)

λ

ε→ 0

Figure 2: Bifurcation diagrams of the problem with the exponential nonlinearity (5) in the critical and
slightly supercritical cases (n = 2, p = 2− ε). The fact that the nonlinearity u 7→ eu takes a non zero value
at u = 0 is responsible for the fact that the branch of minimal solutions bifurcates from (0, 0). This is of
course a fundamental difference with the Brezis-Nirenberg problem (1) which bifurcates from (λ1, 0).
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Figure 3: Phase portrait for the Brezis-Nirenberg problem after the Emden-Fowler transformation of
Section 2.1 in the slightly supercritical case.

ε = 0
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xy

Figure 4: Phase portrait for the problem with the exponential nonlinearity after the Emden-Fowler
transformation in the slightly supercritical case.


