Poster Open Access

Machine Learning analysis of self-consistent magnetic flux ropes realized in M-dwarf dynamo simulations

Connor P Bice; Juri Toomre

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20210303020921.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Supported by NASA grants NNX17AG22G and 80NSSC20K1543</subfield>
  <controlfield tag="001">4574633</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Colorado Boulder</subfield>
    <subfield code="a">Juri Toomre</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1894095</subfield>
    <subfield code="z">md5:58ef5003a817e24c692660e1aef1ee1f</subfield>
    <subfield code="u"> Stars 20.5 Poster.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-03-02</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-coolstars20half</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Colorado Boulder</subfield>
    <subfield code="a">Connor P Bice</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning analysis of self-consistent magnetic flux ropes realized in M-dwarf dynamo simulations</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-coolstars20half</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The dynamical origins of the intense magnetic activity exhibited by most M-dwarf stars remains an unanswered question in stellar astrophysics. Despite the central role magnetic flux ropes are thought to play in the formation of sun and star spots, global MHD simulations of stellar interiors have historically struggled to self-consistently capture their dynamics. By their nature, these structures tend to be short-lived or wholly absent in all but the most turbulent high-resolution simulations -- environments which make their hand-identification and study prohibitively time-consuming. We present here a novel machine learning approach for the identification and dynamical analysis of the hundreds of self-consistent, rising flux ropes in our simulations of M-dwarf interiors. We report on the details of the models developed, as well as the prospects for their continued use with not only our own simulations, but those of the entire stellar convection community.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4574632</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4574633</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
All versions This version
Views 4040
Downloads 3636
Data volume 68.2 MB68.2 MB
Unique views 3636
Unique downloads 3131


Cite as