Conference paper Open Access

Individual Fairness in Kidney Exchange Programs

Farnadi, Golnoosh; St-Arnaud, William; Babaki, Behrouz; Carvalho, Margarida


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Kidney exchange programs, mixed-integer programming, constraint programming, fairness in AI</subfield>
  </datafield>
  <controlfield tag="005">20210303002717.0</controlfield>
  <controlfield tag="001">4573995</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">2-9 February 2021</subfield>
    <subfield code="g">AAAI 2021</subfield>
    <subfield code="a">Thirty-Fifth AAAI Conference</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Université de Montréal</subfield>
    <subfield code="a">St-Arnaud, William</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Polytechnique Montréal</subfield>
    <subfield code="a">Babaki, Behrouz</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Université de Montréal</subfield>
    <subfield code="a">Carvalho, Margarida</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2203523</subfield>
    <subfield code="z">md5:e7612d6def5d335c3a8fb31eccf84b21</subfield>
    <subfield code="u">https://zenodo.org/record/4573995/files/IF-KEP.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://aaai.org/Conferences/AAAI-21/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-03-02</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4573995</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">MILA</subfield>
    <subfield code="a">Farnadi, Golnoosh</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Individual Fairness in Kidney Exchange Programs</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Kidney transplant is the preferred method of treatment for patients suffering from kidney failure. However, not all patients can find a donor which matches their physiological characteristics. Kidney exchange programs (KEPs) seek to match such incompatible patient-donor pairs together, usually with the main objective of maximizing the total number of transplants. Since selecting one optimal solution translates to a decision on who receives a transplant, it has a major effect on the lives of patients. The current practice in selecting an optimal solution does not necessarily ensure fairness in the selection process. In this paper, the existence of multiple optimal plans for a KEP is explored as a mean to achieve individual fairness. We propose the use of randomized policies for selecting an optimal solution in which patients&amp;#39; equal opportunity to receive a transplant is promoted. Our approach gives rise to the problem of enumerating all optimal solutions, which we tackle using a hybrid of constraint programming and linear programming. The advantages of our proposed method over the common practice of using the optimal solution obtained by a solver are stressed through computational experiments. Our methodology enables decision makers to fully control KEP outcomes, overcoming any potential bias or vulnerability intrinsic to a deterministic solver.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4573994</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4573995</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
66
47
views
downloads
All versions This version
Views 6666
Downloads 4747
Data volume 103.6 MB103.6 MB
Unique views 5757
Unique downloads 4242

Share

Cite as