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The accuracy of the determination of longitudinal cross-relaxation rates in NMR can be improved
by combining symmetrical reconversion with suitable operator swapping methods that lead to the
averaging of differences in autorelaxation rates and eliminate the effects of cross relaxation with the
environment. The principles are first discussed for an isolated two-spin system comprising a pair of
15N and 1HN nuclei subjected to chemical shift anisotropy and dipole-dipole relaxation, and then
extended to include further protons. The gains in accuracy are demonstrated experimentally for the
protein ubiquitin. © 2007 American Institute of Physics. �DOI: 10.1063/1.2715583�

I. INTRODUCTION

Cross-correlated relaxation rates have proven to be use-
ful to obtain detailed information on molecular structure,1,2

internal dynamics,3–7 and chemical shift anisotropy �CSA�
tensors.8–10 Usually, only transverse cross-correlation rates
are measured, but measurements of longitudinal cross-
correlation rates can enhance the accuracy of the determina-
tion of anisotropic rotational diffusion tensors of proteins and
of chemical exchange rates.11 Correlated fluctuations of the
CSA of a spin S �e.g., 15N� and the dipole-dipole �DD� inter-
action between two spins S and I �e.g., 1HN� lead to an in-
terconversion of the operators Sz and 2IzSz. This is known as
“cross-correlated cross relaxation.” The rate of their inter-
conversion, which will henceforth simply be referred to as
“cross-relaxation rate,” can be evaluated by detecting the de-
cay of the operator P �say, Sz� and by monitoring the buildup
of the other term Q �say, 2IzSz� in two separate experiments.3

However, since the two operators P and Q usually have dif-
ferent autocorrelated relaxation rates �P and �Q, the cross-
relaxation rate � is difficult to quantify.12,13 Kroenke et al.11

developed a method to overcome this problem: in the inter-
val T where �cross-�relaxation occurs, two “swapping
blocks” S �each of which comprises a sequence of pulses and
delays in the manner of insensitive nuclei enhanced by po-
larization transfer �INEPT�� are inserted at T /4 and 3T /4 in
order to swap the two operators P and Q, so that their au-
torelaxation rates are averaged. This method greatly en-
hances the accuracy of the measurement of longitudinal
cross-correlation rates, provided the difference of the autore-
laxation rates �=−��P−�Q� /2 is not too large compared to
the average rate �PQ= ��P+�Q� /2. However, the introduction
of the two swapping blocks S may also introduce new sys-

tematic errors. Moreover, errors may arise due to differences
in the detection efficiencies of the relevant operators P and
Q.14,15 To overcome these problems, we have recently intro-
duced a scheme called “symmetrical reconversion,” which
was originally designed for the measurement of transverse
cross-relaxation rates.14 Instead of merely measuring the de-
cay of the operator Q=2SxIz and its conversion into P=Sx,
we suggested to detect the rates of the decay of both opera-
tors P and Q and the two interconversion rates P→Q and
Q→P. We demonstrated that this method was accurate, de-
spite differences in detection efficiencies, and that errors
arising from violations of the secular approximation re-
mained tolerable even when the scalar couplings are small
compared to the line widths. In this article we show that the
application of symmetrical reconversion can also increase
the accuracy of the measurement of longitudinal cross-
relaxation rates.

II. THEORY

Figure 1�a� shows the principle of the symmetrical re-
conversion method. If one starts with an operator P, this term
is partially converted into another operator Q due to cross
relaxation in the interval T. In order to quantify the extent of
this interconversion, both operators Q and P must be de-
tected in separate experiments. However, it is difficult, if not
impossible, to have the same detection efficiency for both
operators, since their transformation into observable signals
must follow distinct pathways that are prone in different
ways to relaxation and nonideal rf pulses. Therefore, we sug-
gested that four complementary experiments be used to
record the decays of the operators P �sequence I� and Q �IV�
and the conversion of P into Q �II� and of Q into P �III�. The
ratio of the signal amplitudes defined in Eq. �1� depends
neither on the efficiency of the initial excitation of P and Q
nor on the efficiency of their detection. In the case of trans-
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verse cross-relaxation rates, simulations have shown that the
use of symmetrical reconversion also significantly reduces
artifacts due to violations of the secular approximation, so
that the amplitudes of the four signals Ai recorded with the
experiments i=I, II, III, and IV of Fig. 1 obey the following
equation to a very good approximation:14

�AII�T�AIII�T�
AI�T�AIV�T�

= tanh��T� , �1�

where � is the cross-relaxation rate between the operators P
and Q.

For measurements of longitudinal cross relaxation, the
situation is more complicated. In this work, we first give an
analytical treatment of an isolated two-spin system. The av-
eraging of longitudinal autorelaxation rates by symmetrical
reconversion is then discussed using an average Liouvillian
approach. We also evaluate the effect of competing cross-
relaxation pathways, such as proton-proton nuclear Over-
hauser effects �NOE�, in systems with three or more spins,
and we show that the deleterious effects of imperfect swap-
ping of the operators P and Q during the relaxation delay can
be significantly reduced by symmetrical reconversion and
phase cycling. Finally, we investigate the effect of the so-
called thermal correction on observables in relaxation mea-
surements.

A. Analytical treatment of a two-spin 1/2 system

The evolution of the spin systems under study will be
described in the frame of the homogeneous master equation
�HME�16

d��t�
dt

= − L̂�t���t� , �2�

where L̂�t� is the Liouvillian superoperator. In all but
Sec. II E, where thermal correction factors must be incorpo-
rated, the Liouvillian operator will be represented by an ef-
fective relaxation matrix. We first consider an isolated two-
spin system consisting of S= 15N and I= 1HN. The
interference between the CSA of the proton and the N–HN

dipole-dipole interaction will be neglected, so that a set con-
sisting of only two operators P=Nz and Q=2NzHz

N suffices to
describe the evolution of the longitudinal polarization,

d

dt
��P	�t�

�Q	�t� 
 = − ��P �

� �Q
���P	�t�

�Q	�t� 
 , �3�

where �P and �Q are the autorelaxation rates of the operators
P and Q and � their cross-relaxation rate. This description is
quite general and can also be used, inter alia, for cross re-
laxation between P=Cz� and Q=Cz

�, or between P=2Cz�Nz

and Q=2Cz
�Nz.

17 The differential equation can be solved ana-
lytically,

��P�T�	
�Q�T�	 
 = exp�− �PQT��ch + ��/��sh − ��/��sh

− ��/��sh ch − ��/��sh
�

���P�0�	
�Q�0�	 
 , �4�

where ch=cosh��T�, sh=sinh��T�, �PQ= ��P+�Q� /2,
�=−��P−�Q� /2, and �=��2+�2. The cross-relaxation rate
�PQ can be determined by measuring the decays of P and Q
and the interconversion from P to Q and vice versa in four
separate experiments, as indicated in Fig. 1�a�. For longitu-
dinal relaxation, the ratio of the four signal amplitudes is
given by

�AIIAIII

AIAIV
=� �2sh2

�2ch2 − �2sh2 . �5�

Equation �5� reduces to Eq. �1� when � is negligible, i.e.,
when �Q�P. Neither of the ratios of Eq. �1� or �5� depends
on the efficiency of the initial excitation or detection of the
operators P and Q. For short relaxation times T both ratios of
Eqs. �1� and �5� can be approximated by ��T�. For longer
delays, the ratio of Eq. �5� is affected by �. To obtain an
estimate of � one can take the dependence on T of the ratio
of the signal amplitudes of experiments IV and I,

AIV

AI
= C

�ch − �sh

�ch + �sh
, �6�

where the constant C accounts for the unequal efficiencies of
initial excitation and detection of the operators P and Q in
the two experiments. The ratio of Eq. �6� can be approxi-
mated up to second order in T by C�1−�T+�2T2 /2�. Hence,
one can obtain the cross-relaxation rate � and the difference
� by fitting simultaneously the experimental intensities of
Eqs. �5� and �6�.

Symmetrical reconversion is a general concept appli-
cable to any cross-relaxation mechanism. However, when
there are competing cross-relaxation mechanisms �such as

FIG. 1. Principle of the symmetrical reconversion approach. �a� In a system
comprising two operators P and Q, one records four separate experiments
that correspond to four relaxation pathways. �b� To circumvent problems
arising from differences � in the autorelaxation rates of P and Q and from
perturbing cross-relaxation processes to further spins, the two operators P
and Q are swapped in the middle of the relaxation delay T. �c� The scheme
developed by Kroenke et al. where P and Q are swapped twice but only two
relaxation pathways are detected.
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proton-proton NOE’s in proteins� the approximation of an
isolated spin system is not appropriate, particularly if the
competing cross-relaxation rates are larger than the one of
interest. This problem will be more important if, as in the
present study of CSA/DD cross correlation, the protein is not
deuterated. To overcome this issue, one can swap the opera-
tors P and Q in the middle of the relaxation period T, as in
Fig. 1�b�. The analytical expressions to describe the evolu-
tion of the density operator become a bit more cumbersome.
The cross-relaxation rate can be approximated by

��� =
1

T
atanh��AIIAIII

AIAIV
���1 +

1

24
�2T2 + O�T4�
 ,

�7�

where O�T4� represents other terms that are proportional to
T4 and higher orders. When �T�1 this reduces to Eq. �1�
and immediately gives the cross-relaxation rate �. Otherwise,
� can be obtained from the dependence on T of the ratio of
the signal amplitudes of experiments II and III,

AIII

AII
= C exp�− �T���1 +

1

6
�2�T3 + O�T5�
 . �8�

In the next section we shall describe the averaging of autore-
laxation in terms of average Liouvillians,16,18,19 which will
be helpful in describing the effects of competing proton-
proton NOE’s and pulse imperfections.

B. Averaging of autorelaxation rates by symmetrical
reconversion

An interesting feature of symmetrical reconversion can
be verified both by numerical simulations and experiments:14

the autorelaxation rates �P and �Q of the operators undergo-
ing cross relaxation are averaged very effectively when cal-
culating the product of signal amplitudes AIAIV in the de-
nominator of Eq. �1�. This averaging effect may also be
obtained by manipulating the density operator in the course
of the pulse sequence, for example, by swapping the opera-
tors P and Q �e.g., Nz and 2NzHz

N�. A general expression for
the operator that describes such a swapping operation is

Ŝ = �
i

�Xi
PXi

Q+
+ Xi

QXi
P+

� + �
j

Y jY j
+, �9�

where �Xi
P� and �Xi

Q� represent the two sets of Cartesian op-
erator products that contain P and Q, respectively, while the
set of operators �Y j� completes the basis of the appropriate
Liouville space. If the analysis can be reduced to the two-
dimensional Liouville subspace spanned by the operators P
and Q as in Eq. �2�, the ideal swapping of P and Q can be
represented by the simple matrix

Ŝ2
id = �0 1

1 0
� , �10�

where the subscript 2 indicates the dimension of the Liou-
ville subspace, a convention that will henceforth be followed
for all superoperators.

We focus attention on the denominator D= �AIAIV�1/2 in
Eq. �1�. When both operators � and A are represented by

vectors in Liouville space, the usual expression for an expec-
tation value �A	=Tr�A��t�� can be replaced by �A	=A+��t�,
so that D may be written as

D = �P+ exp�− L̂T�PQ+ exp�− L̂T�Q+. �11�

Introducing the superoperator Ŝ that describes the swap-

ping block S, so that L̂�= Ŝ−1L̂Ŝ, one obtains

D = �P+ exp�− L̂T�P̂ exp�− L̂�T�P , �12�

where P̂ is the projection superoperator P̂= PP+. We may

perform a Taylor expansion of D. Note that the projector P̂
may be introduced on the left or right of any expression
between a vector and its transposed form. We may define an
average Liouvillian operator

L̂av = L̂�0� + L̂�1� + L̂�2� + . . . , �13�

with

L̂�0� =
1

2
�L̂ + L̂�� , �14�

and

L̂�1� =
T

8
��L̂ − L̂��P̂,�L̂ − L̂��� , �15�

so that one may write

D = P+ exp�− L̂avT�P . �16�

As long as the auto- and cross relaxation of the operators P

and Q is confined to a two-dimensional subspace �Ŝ= Ŝ2
id� and

described by a symmetrical relaxation superoperator �L̂�

= L̂�, both terms in the commutator of Eq. �15� are diagonal,

so that the first-order correction L̂�1� to the average Liouvil-
lian of Eq. �13� vanishes. Exact calculations show that even

the second-order correction L̂�2� vanishes in this favorable
case. However, if cross relaxation involving a third operator
R occurs, and if the cross-relaxation rates �PR and �QR are

different, the first-order correction L̂�1� does not vanish.
We now examine the numerator in Eq. �1�. If the relax-

ation superoperator is Hermitian, AII and AIII are equal. In-
deed, we may write

AII = P+ exp�− L̂T�Q ,

�17�
AIII = Q+ exp�− L̂T�P .

These amplitudes are both real numbers so that one can write

AIII = AIII
T = P+�exp�− L̂T��TQ = P+�exp�− L̂T��Q = AII.

�18�

If the effective relaxation superoperator is not Hermitian,
for instance because of imperfect swapping of the operators
P and Q during the relaxation delay T �vide infra�, the term
that depends to first order on T in the expansion of the nu-
merator �AIIAIII�1/2 in Eq. �1� is given by the geometric aver-
age of the off-diagonal terms in the effective Liouvillian,
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�AIIAIII�1/2 = �LPQLQP�1/2T + O�T2� . �19�

C. Effects of proton-proton cross relaxation
„homonuclear NOE’s…

Consider a system with N	2 spins with dipolar cross
relaxation between the proton HN belonging to the pair
�I=N, S=HN� and one or more neighboring protons H. In our
study of a nondeuterated protein, we shall consider that H
=H� since this is often the closest proton. In this case, the
first-order correction of Eq. �15� does not vanish. For the
CSA/DD cross correlation under discussion, the HME can be
cast in the following form:

d

dt�
�P	�t�
�Q	�t�
�V	�t�
�W	�t�

� = − L̂4�
�Nz	�t�

�2NzHz
N	�t�

�2NzHz
�	�t�

�4NzHz
NHz

�	�t�
�

= − L̂4�
�P	�t�
�Q	�t�
�V	�t�
�W	�t�

� , �20�

where

L̂4 =�
�P � 0 0

� �Q � 0

0 � �V �

0 0 � �W

� . �21�

Note that the cross-relaxation rate � that connects P and Q is
the same as the off-diagonal term � between operators V and

W. The subscript 4 on L̂4 refers to the dimension of the
Liouville subspace while �=��HNH��, i.e., the dipolar cross-
relaxation �Overhauser� rate between the two nearby protons
HN and H�. The dipolar coupling between N and H� has
been neglected.

The �ideal� swapping of the longitudinal operators P and
Q can be represented by the unitary transformation,

Ŝ4
id =�

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
� . �22�

The first-order average Liouvillian resulting from Eq.
�15� corresponding to the symmetrical reconversion scheme
of Fig. 1�a� is

L̂sr
�1� =

T

8�
− �2 0 0 2��

0 0 0 0

0 0 0 0

2�� 0 0 �2
� , �23�

where the subscript sr stands for symmetrical reconversion.
From Eq. �23�, it is clear that symmetrical reconversion
alone is not sufficient to suppress effects of cross relaxation
to neighboring protons. Note that all terms would vanish if �

were zero, which would effectively correspond to a system
with two isolated spins S=N and I=HN. Several methods
have been developed to suppress proton dipolar cross-
relaxation pathways.20–23 It is possible to symmetrize the
cross-relaxation pathways with respect to the autorelaxation

rates of the Nz and 2NzHz
N operators by using the Ŝ4

id trans-
formation of Eq. �22� in the middle of the relaxation delay
T,11,24 as in Fig. 1�b�. Using this scheme, the zeroth-order
average Liouvillian is

L̂4
�0� =�

�PQ � 0 �/2

� �PQ �/2 0

0 �/2 �VW �

�/2 0 � �VW

� , �24�

with �VW= ��V+�W� /2, in analogy to �PQ= ��P+�Q� /2. If, in
addition to swapping the operators in the middle of the in-
terval T as expressed by Eq. �22�, one considers the ratio of
Eq. �1� in the context of symmetrical reconversion, the first-

order correction due to L̂4
�0� vanishes since Ŝ4

id−1L̂4
�0�Ŝ4

id= L̂4
�0�.

When using the ratio of Eq. �1� appropriate for symmetrical
reconversion, the lowest-order correction to the average Li-
ouvillian, which comes from the zeroth- and first-order Li-

ouvillians L̂4
�0� and L̂4

�1�, depends on T2. It is also possible to
cancel the first-order terms by using two swapping transfor-

mations Ŝ4
id at T /4 and 3T /4 during the relaxation delay as in

Fig. 1�c�.11,19 Proton-proton cross-relaxation �Overhauser�
effects do not lead to any artifacts, provided two conditions
are fulfilled: �i� the Liouvillian superoperator that governs
relaxation processes must be invariable to the permutation

Ŝ4
id of the two cross-relaxing operators P and Q �see Eq. �24��

and �ii� the Liouville subspaces containing the cross-relaxing
operators should only be linked by the cross-relaxation rate
that one wishes to measure �see Appendix�.

D. Effects of imperfect operator swapping
transformations

A prerequisite for the use of average Liouvillian theory
for the design of relaxation experiments is that transforma-
tions intended to swap pairs of operators should be ideal, i.e.,
that relaxation during the swapping blocks and rf pulse errors
can be neglected, so that they can be represented by unitary
transformations. If relaxation or any other imperfection af-
fects all operators identically during the swap sequence, the
swap operator can be represented by a unitary matrix
multiplied by a scalar attenuation factor, for instance
a=exp�−R22
� for transverse relaxation, so that average Li-
ouvillian theory is valid.19 If the nonideality leads to a non-
uniform attenuation of different terms in the density operator,
the consequences can be more severe. In the pulse scheme of
Fig. 2 designed to swap longitudinal one- and two-spin or-
ders Nz and 2NzHz

N, the � pulse applied to the protons at the
beginning of the swapping block can be a source of nonide-
ality. Indeed, an improper calibration of this pulse and its
unavoidable rf field inhomogeneity lead to deviations from
an ideal nutation angle � which affects the two-spin order
2NzHz

N. We can describe these effects in the two-dimensional
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Liouville subspace spanned by operators P and Q by a non-

ideal asymmetric swapping superoperator Ŝ2
nid,

Ŝ2
nid = �0 1 − �

1 0
� , �25�

where 0��1 describes the deviation from the ideal swap-

ping transformation Ŝ2 of Eq. �10�. Note that the nonideal �
pulses in the middle of the swap sequence lead to a uniform
attenuation that does not affect the measured rate. Using an
analytical treatment for the scheme of Kroenke et al.,11 the
ratio �AII /AIV� turns out to be

AII/AIV = − ��1 − �/2�T + O�T2� �26�

if the operators P and Q are swapped once in the middle of
the relaxation delay. If these terms are swapped twice at T /4
and 3T /4, the ratio is

AII/AIV = − ��1 − �/2�/�1 − ��

= − ��1 + �/2 + O��2��T + O�T2� . �27�

On the other hand, the effect of the geometric averages
in the denominators �AIIAIV�1/2 of Eqs. �1� and �5� used for
symmetrical reconversion can be represented by an ideal

swapping superoperator Ŝ2. If, in addition to symmetrical
reconversion, a single swapping operation represented by

Ŝ2
nid is applied in the middle of the relaxation period T, the

zeroth-order doubly averaged Liouvillian that expresses the
evolution of the denominator in Eq. �1� is

L̂av
�0� = � �PQ ��1 − �/2�2/�1 − ��

��1 − �/2�2/�1 − �� �PQ
� . �28�

The off-diagonal elements can be expanded as
��1−� /2�2 / �1−��=��1+�2 /4+O��3��. The first-order coef-
ficient in the Taylor expansion of the numerator �AIIAIII�1/2 of
Eqs. �1� and �5� does not show any first-order dependence on
�. Therefore, the systematic error on the measured rate is

attenuated below the detection threshold, even for values of
� as large as 0.1 �which corresponds to a nonideal nutation
on the proton through 165° instead of 180°�.

Another source of artifacts, which is important when
measuring small cross-relaxation rates, is the partial conser-
vation of the initial operators in the swapping transformation,
i.e., the presence of residual terms along the diagonal of the
matrix,

Ŝ2
res = �� 1

1 �
� . �29�

For small values of �, the apparent rate is �−2� /T with the
double swapping method of Kroenke et al.11 and �−� /T
when considering the symmetrical reconversion ratio of Eq.
�1�. For the shortest delays employed, the relative error on
the measured rates may be an order of magnitude larger than
�. In the present study, such a problem would arise if the � /2
pulses of the block that is supposed to swap P and Q �i.e., Nz

and 2NzHz
N� are not ideal �which is inevitable due to imper-

fect rf homogeneity�. This effect was suppressed by phase
cycling of the initial � /2 pulse in the swapping block in Fig.
2.

In conclusion, symmetrical reconversion suppresses the
deleterious effects of imperfections of the proton pulses that
lead to an asymmetric swap operator �Eqs. �25�–�28��. rf
field inhomogeneities or miscalibration of the nitrogen
pulses, which cause residual diagonal terms of the swap op-
erator, are corrected for by phase cycling. Nonideal settings
of the fixed delays �due to the dispersion in the values of
scalar coupling constants� and relaxation lead to a uniform
attenuation of all operators, which only affects the precision
and not the accuracy of the measurements.

E. Thermal correction effects

Levitt and Di Bari18 have shown that it is possible to
create several kinds of steady-state terms under multiple-
pulse experiments. However, most relaxation measurements
of longitudinal polarization or multiple-spin order assume
that the spin system evolves towards a saturated or demag-
netized steady state where the density operator can be de-
scribed by a unity operator. In this section, we demonstrate
that we do not expect any perturbations from steady-state
effects in our experiments.

Using the notation of Ghose,19 the Liouvillian superop-

erator L̂�t� of Eq. �2� can be defined as

L̂�t� = iĤ�t� + �̂�t� + �̂�t� , �30�

where Ĥ�t� is the Hamiltonian superoperator that contains all

coherent terms, �̂�t� is the relaxation superoperator, and �̂�t�
is the thermal correction superoperator. The latter takes into
account the evolution of the spin system towards a steady
state. In our experiments, the relaxation takes place after a
so-called isotope selection which is achieved by alternating
the phase of a pulse. This means that the sign of part of the
density operator alternates at a given point in a pulse se-
quence, usually before the beginning of the relaxation pe-
riod. To take this sign alternation into account, we may ex-

FIG. 2. Pulse sequences for the measurement of the longitudinal cross-
correlated cross-relaxation rate �. Narrow filled and unfilled bars indicate
� /2 and � pulses, respectively, while the wide unfilled rectangle stands for
a decoupling sequence and low filled squares for selective � /2 pulses ap-
plied to the water resonance. All pulses are along the x axis unless otherwise
indicated. The four pulses marked by an asterisk are phase alternated inde-
pendently, while changing the receiver sign. The delay 
=1/ �4JNH� is
2.65 ms. A total of four interleaved experiments are performed, each experi-
ment following a different path as indicated in the boxes �see Fig. 1�.
The central box S represents the sequence designed to swap the operators
P and Q.
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pand the density operator in the basis �E /2 ,Qi
g ,Qj

u�, where
E is the identity operator, while the even operators �Qi

g�
�g for gerade� are invariant and the odd operators �Qj

u� �u for
ungerade� alternate in sign,

�+�0� = E/2 + �
i

aiQi
g + �

j

bjQj
u,

�31�
�−�0� = E/2 + �

i

aiQi
g − �

j

bjQj
u.

After a subsequent interval �i.e., a relaxation delay T, a co-
herent evolution period t1, etc.� represented by the propaga-

tor Û, the density operators are

Û�+�0� = ÛE/2 + �
i

aiÛQi
g + �

j

bjÛQj
u,

�32�
Û�−�0� = ÛE/2 + �

i

aiÛQi
g − �

j

bjÛQj
u.

Since the signals must be subtracted from each other, the
signs of the observable operators are reversed for odd scans
�Qobs for even and −Qobs for odd scans�, leading to the net
signal,

tr�QobsÛ�+�0�� + tr�− QobsÛ�−�0�� = 2�
j

bj tr�QobsÛQj
u� .

�33�

This corresponds exactly to the signal resulting from two
experiments that would both have started with the reduced
density operator,

��0� = �
j

bjQj
u. �34�

Thus the isotope filter ensures that the even operators �Qi
g�

do not contribute to the observable signal. Moreover, an in-
teresting characteristic of the thermal correction factor can be

derived recursively, using the property �̂2=�̂�iĤ+ �̂�=0,

�iĤ + �̂ + �̂�n = �iĤ + �̂�n + �iĤ + �̂�n−1�̂ , �35�

for every natural integer n, so that

exp�− �iĤ + �̂ + �̂�t�

= exp�− �iĤ + �̂�t� + �
n=1

+�
1

n!
�iĤ + �̂�n−1�̂ . �36�

Therefore, Û�t���0�=exp�−�iĤ+ �̂�t���0�, i.e., the thermal
correction is averaged out. Notice, however, that the sign
alternation has to be performed before the relaxation interval
T in the sequence where the thermal correction could affect
the evolution of the density operator. If the isotope filter is
inserted after the relaxation delay T, the effects of the ther-
mal correction must be taken into account.

III. MATERIALS AND METHODS

All experiments were performed on a Bruker Avance
600 MHz spectrometer with a triple-resonance probe
equipped with three orthogonal gradients. A 1.5 mM sample

of uniformly 15N labeled human ubiquitin with 50 mM am-
monium acetate �pH=4.5� was investigated, except for the
temperature dependent experiments, for which a sample of
triply labeled �2H, 13C, 15N� ubiquitin with a similar concen-
tration and pH was used.

Figure 2 shows the pulse sequences used for the mea-
surement of the longitudinal cross-relaxation rate �. After an
initial INEPT transfer, the operator 2NzHz

N is selected in ex-
periments I and II, while this operator is converted into Nz in
experiments III and IV. Then a relaxation period T follows.
In the center of this period, the operators Nz and 2NzHz

N are
swapped by an INEPT block. The first pulse applied to the
15N nuclei is phase alternated in order to ensure that the
diagonal elements of the matrix of Eq. �29� are zero. At the
end of the relaxation period T, 2NzHz

N is detected directly in
experiments I and III, while Nz is converted into 2NzHz

N in
experiments II and IV prior to detection. In order to prevent
cross contamination between the two desired operators, a
proton � /2 pulse followed by a gradient is used to select Nz,
while two � /2 pulses �the second of which is phase alter-
nated� are applied for the selection of 2NzHz

N. In all experi-
ments the nitrogen-15 coherence evolves in the t1 interval,
giving rise to heteronuclear single quantum correlation
�HSQC�-like spectra.

IV. RESULTS

The new approach �Fig. 1�b�� combines the swapping of
the operators P and Q �i.e., Nz and 2NzHz

N� in the middle of
the relaxation interval T on the one hand and the combina-
tion of four signal amplitudes in the manner of symmetrical
reconversion. This method was applied to a sample of 15N
labeled human ubiquitin. We have also employed the se-
quence of Kroenke et al.11 �see Fig. 1�c�� with small modi-
fications; instead of including the so-called sensitivity en-
hanced echo-antiecho sequence25 we applied the method of
States et al.26 for frequency discrimination and Watergate27

for water suppression. Although, as expected, sensitivity en-
hancement gives an enhancement of the signal of about 1.4,
there are a few disadvantages associated with it. First of all,
the net effect of the sensitivity enhancement sequence on the
protons which are not coupled to nitrogen-15 is in principle a
2� rotation. Often, this is an advantage since the water mag-
netization is, at least in principle, returned to its equilibrium
position, as in flip-back methods. However, in the two ex-
periments developed by Kroenke et al.11 the water magneti-
zation evolves differently in the two sequences, which might
lead to systematic errors. Moreover, in our hands, we do not
see any improvement in the reproducibility of the values of
the relaxation rates in terms of standard deviations of iden-
tical experiments. This can be attributed to different factors:
the phases of the signals are not pure, partly due to homo-
nuclear proton-proton couplings acting in the delays, and
partly due to offset effects �titled effective fields� during the
pulses. Secondly, the water signal tends to be suppressed less
efficiently, leading to small base line distortions. It would be
possible to combine the symmetrical reconversion method of
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Fig. 1�b� with the double swapping scheme of Fig. 1�c�.
However, calculations indicate that such a combination
would not improve the accuracy.

The circles in Fig. 3 �top� indicate values � averaged
over residues 2–70 obtained using Eq. �1� for different relax-
ation delays T. Since the protein was not deuterated, a sig-
nificant difference between the autorelaxation rates of Nz and
2NzHz

N operators is observed. The triangles in Fig. 3 �top�
correspond to rates that have been corrected using Eq. �7�,
inserting � obtained from an exponential fit of the ratios of
the signal amplitudes AII and AIII according to Eq. �8�. The
dashed line corresponds to the weighted average � of these
values, while the bold line corresponds to the theoretical
curve of the rates obtained from Eq. �7�, using averages of �
and �. In Fig. 3 �bottom�, the average values of � obtained
with the sequence of Kroenke et al.11 are plotted as a func-
tion of the relaxation time T. One can see that the deviations
are particularly large for short times. The deviations are most
likely due to remaining diagonal elements in the matrix of
Eq. �29�, which can arise from incorrect 15N pulse calibration
and B1 inhomogeneity. These artifacts could in principle be
diminished by phase alternating the phase of the first 15N
pulse of the two swapping blocks, as has been done in the

new sequence of Fig. 2. However, this would neither remove
artifacts due to the nonideal swapping matrix of Eq. �25� nor
compensate for errors due to differences in detection effi-
ciencies of the terms 2NzHz

N and Nz. The dashed lines in Fig.
3 �top� and �bottom� are at the same height �note the different
vertical scales�, while the bold line in Fig. 3 �bottom� repre-
sents the theoretical rate that is obtained if one does not take
into account the difference � in autorelaxation rates. With
the conventional sequence it is not possible to correct for
deviations due to the difference in relaxation rates between
2NzHz

N and Nz, unless this difference can be determined by
independent measurements.

Figure 4 shows the exchange rates Rex�N� that have been
obtained by combining longitudinal and transverse auto- and
cross-correlated relaxation rates,11

Rex�N� = R2�N� − �R1�N� − 1.25��H → N��

�
RT�N/NH�
RL�N/NH�

− 1.08��H → N� , �37�

where RL�N/NH� �=�� and RT�N/NH� are the longitudinal
and transverse CSA/DD cross-correlated relaxation rates,
��H→N�= ��N/�H���−1�R1�N� and where the Overhauser
enhancement � is given by the ratio of the intensities of the
15N signals in experiments with and without proton satura-
tion. Of all the residues for which a value of Rex could be
extracted, only two show significant chemical exchange:
threonine 9 and asparagine 25. The latter is well known for
showing line broadening due to chemical exchange.28–31

However, the accuracy, precision, or sample conditions of
previous studies of ubiquitin have not permitted to observe a
small exchange contribution to the transverse 15N relaxation
rate of Thr9. On the other hand, relaxation rates of multiple-
quantum 15N–HN coherences at 280 K indicated that the
15N–HN pair of Thr9 was involved in a chemical exchange
process.31

The new experiment of Figs. 1�b� and 2 also allows one
to measure accurately the temperature dependence of the or-
der parameter S2. We start by combining the longitudinal and
transverse cross-correlation rates,

FIG. 3. Results of the experiment of Fig. 2 applied to a sample of 15N
labeled human ubiquitin. �Top�: Rates ��	 averaged over residues 2-71 are
plotted as a function of the relaxation delay T. The open circles were ob-
tained by inserting the peak intensities of the four experiments into Eq. �7�
assuming �=0. The triangles correspond to the rates ��	 corrected for the
difference � between the relaxation rates of the operators Nz and 2NyHz

using Eqs. �7� and �8�. The dashed line represents the weighted average of
the rates represented by the triangles, while the bold line is the theoretical
curve obtained from Eq. �7� when combining this average with ��	. On the
bottom are the results obtained with the sequence of Kroenke et al.11 The
dashed line lies at the same height as below, while the bold line represents
the theoretical curve.

FIG. 4. Amide nitrogen exchange rates Rex�N� obtained from measurements
of RL�N/NH�, RT�N/NH�, R1�N�, R2�N� and ��H→N� using Eq. �37�, for
all residues in 15N labeled human ubiquitin.
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RT�N/NH� − 1
2RL�N/NH� = DJN/NH�0� . �38�

In the case of an axially symmetric rotational diffusion ten-
sor and isotropic local motions, the spectral density JN/NH���
is32,33

JN/NH��� = S2�
n=1

3
An
n

1 + �2
n
2

+ ��1.5 cos2��N/NH� − 0.5� − S2�



1 + �2
2 ,

�39�

where �N/NH is the angle between the principal
axes of the dipolar and the axially symmetric CSA
interactions, A1= �1.5 cos2 �N−0.5��1.5 cos2 �NH−0.5�, A2

=3 sin �N cos �N sin �NH cos �NH cos �N/NH, and A3

=3 sin2 �N sin2 �NH cos 2�N/NH/4; �N and �NH are the po-
lar angles of the CSA and the dipolar interaction in the frame

of the diffusion tensor; �N/NH is the difference between the
azimuthal angles of the CSA and the dipolar interactions;

1=6D�

−1; 
2= �5D�+D��−1; 
1= �2D�+4D��−1; D� is the ro-
tational diffusion coefficient perpendicular to the axis of
symmetry of the diffusion tensor; D� is the rotational diffu-
sion coefficient around this symmetry axis, 
−1=
int−1

+4D�+2D�; 
int is the correlation time for the internal mo-
tion, and finally, S2 is the residue-specific order parameter.
The parameters of the diffusion tensor can be obtained by
fitting the ratios of the longitudinal and transverse cross-
correlation rates.11 The fact that the CSA tensor is not axially
symmetric can be taken into account by decomposing the
asymmetric CSA tensor into two axially symmetric tensors
which can be considered as two independent interactions.34

We have also corrected for the fact that the second term of
Eq. �39� might not be negligible by obtaining the values of
the order parameters and the internal correlation times from
R1 and NOE measurements, as indicated in Fig. 5. Since the
exact values of the CSA tensor parameters are usually not
known, it is not possible to obtain an accurate value of the
order parameters. However, we can monitor the changes in
order parameters as a function of temperature by dividing
DS2 �where D is the constant of Eq. �38�� by the average
�DS2	 over all temperatures. In Fig. 6, the average order
parameters over all residues �except for the last four
C-terminal residues� obtained with this method at five differ-
ent temperatures are compared with the order parameters ob-
tained from R1 and NOE measurements. These data show a
good agreement between both methods. In Fig. 7, the slope
of the variation in order parameter with increasing tempera-
ture is plotted as a function of the residue number. Most
NHN vectors show a comparable temperature dependence of
their order parameters. However, flexible regions, like the
turn between the first two � strands of ubiquitin �notably
residues 8, 10, and 11� as well as the C-terminal tail of the
protein �particularly residues 73–76� show a larger increase
of their mobility with temperature. This has also been ob-
served in E. coli ribonuclease H.35 On the other hand, the
order parameters for the � helix of ubiquitin are high and
show a remarkably small dependence on temperature. This
indicates that motions of the � helix faster than the overall
rotational diffusion of ubiquitin are restricted and contribute

FIG. 5. Flow chart that indicates how the axially symmetric rotational dif-
fusion tensor and parameters of internal motion have been determined. �a�
From the ratio RL�N/NH� /RT�N/NH�, approximate parameters of the dif-
fusion tensor are determined assuming that there are no internal motions. �b�
With the help of these values and R1�N� and ��H→N� measurements, an
order parameter Si

2 and an internal correlation time 
i
int are calculated for

each residue. �c� These values are then used to calculate more accurate
parameters of the rotational diffusion tensor. Steps �b� an �c� are repeated
until the calculations converge. In practice these steps were carried out
twice.

FIG. 6. Temperature dependence of the order parameter �S2	 averaged over
residues i=2–70 as determined by �circles� R1�N� and ��H→N� measure-
ments �see Fig. 5� and �triangles� RL�N/NH� and RT�N/NH� �see text for
details�. The order parameters S2 were normalized to give an average of 1
over all temperatures.

FIG. 7. Derivatives of the logarithm of residue-specific order parameters
ln�Si

2� with respect to temperature for all residues in ubiquitin. The plot
shows the average over the two methods of Fig. 6. The bold line gives the
running average over five residues, while the dashed line is the average over
all residues except the last four at the C terminus.
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less to the heat capacity of the protein than other secondary
structure elements. This is not incompatible with a slow col-
lective motion of the entire � helix36 on a microsecond time
scale.37

V. CONCLUSION

We have demonstrated that we can accurately measure
longitudinal cross-relaxation rates due to cross-correlated re-
laxation or Overhauser effects using the principles of sym-
metrical reconversion combined with swapping of suitable
terms in the density operator. Differences between the au-
torelaxation rates of the different operators involved can be
accounted for in a rigorous fashion. We have shown that
accurate measurements of longitudinal cross-relaxation rates
allow one to obtain reliable estimates of chemical exchange
contributions to the decay of transverse 15N magnetization
and the temperature dependence of order parameters S2.

APPENDIX: IDEAL RELAXATION IN THE PRESENCE
OF OTHER NUCLEI

When cross-relaxation with other nuclei is averaged, as
in Eq. �24�, Eq. �1� is exact. To demonstrate this property, we
need two conditions: �i� the Liouvillian superoperator that
governs relaxation processes must be invariant to the permu-

tation Ŝ of the two cross-relaxing operators P and Q and �ii�
the Liouville subspaces containing the cross-relaxing opera-
tors may only be linked by the cross-relaxation process that
is to be observed.

Let us consider a Liouvillian superoperator L̂ such as

L̂4
�0� for which Ŝ−1L̂Ŝ= L̂, where Ŝ is the unitary operator that

describes the swapping of the operators P and Q, such as Ŝ4
id.

Let us analyze the terms in the denominator of Eq. �1�,

AI = P+ exp�− L̂t�P ,

�A1�
AIV = Q+ exp�− L̂t�Q .

We have

AIV = P+Ŝ−1 exp�− L̂t�ŜP = AI . �A2�

Besides the normalization of the signals, Eqs. �18� and �A2�
show that symmetrical reconversion and the conventional
double swapping approach of Fig. 1�c� generate the same
observables under the conditions mentioned above. Let us

now separate L̂ into two parts,

L̂ = L̂a + L̂c, �A3�

where the cross relaxation between operators P and Q is
described by

L̂c = �Ŝ . �A4�

A straightforward calculation shows that

Ŝ−1L̂aŜ = L̂a,

�A5�
L̂aL̂c = L̂cL̂a.

Therefore,

exp�− L̂t� = exp�− L̂at�exp�− L̂ct� . �A6�

Using the closure theorem and the Taylor series of a matrix
exponential, one has

exp�− L̂t� = exp�− L̂at��
Qi

QiQi
+�cosh��t�Ê − sinh��t�Ŝ� ,

�A7�

where Ê is the identity superoperator. In addition, according

to condition �ii�, L̂a does not couple the subspaces containing
P and Q, so that

P+ exp�− L̂at�Q = Q+ exp�− L̂at�P = 0. �A8�

From Eqs. �A1�, �A7�, and �A8�, one can derive

AI = P+ exp�− L̂at�P cosh��t� ,

AII = P+ exp�− L̂at�P sinh��t� , �A9�

AII

AI
= tanh��t� .

The two conditions �i� and �ii� are sufficient to obtain an
ideal behavior for the observable, even in the presence of
proton-proton cross relaxation.
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