Software Open Access
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Gijs van Tulder</dc:creator> <dc:date>2021-03-01</dc:date> <dc:description>This library implements elastic grid-based deformations for N-dimensional images. The elastic deformation approach is described in Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation" (https://arxiv.org/abs/1505.04597) Çiçek et al., "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" (https://arxiv.org/abs/1606.06650) The procedure generates a coarse displacement grid with a random displacement for each grid point. This grid is then interpolated to compute a displacement for each pixel in the input image. The input image is then deformed using the displacement vectors and a spline interpolation. In addition to the normal, forward deformation, this package also provides a function that can backpropagate the gradient through the deformation. This makes it possible to use the deformation as a layer in a convolutional neural network. For convenience, a TensorFlow wrapper is provided in elasticdeform.tf. See https://github.com/gvtulder/elasticdeform</dc:description> <dc:identifier>https://zenodo.org/record/4569691</dc:identifier> <dc:identifier>10.5281/zenodo.4569691</dc:identifier> <dc:identifier>oai:zenodo.org:4569691</dc:identifier> <dc:relation>url:https://github.com/gvtulder/elasticdeform/tree/v0.4.9</dc:relation> <dc:relation>doi:10.5281/zenodo.4563333</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:title>elasticdeform: Elastic deformations for N-dimensional images</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>software</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 188 | 157 |
Downloads | 7 | 6 |
Data volume | 877.6 kB | 752.3 kB |
Unique views | 138 | 123 |
Unique downloads | 6 | 5 |