Software Open Access
{ "description": "<p>This library implements elastic grid-based deformations for N-dimensional images.</p>\n\n<p>The elastic deformation approach is described in</p>\n\n<ul>\n\t<li>Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation" (<a href=\"https://arxiv.org/abs/1505.04597\">https://arxiv.org/abs/1505.04597</a>)</li>\n\t<li>Çiçek et al., "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" (<a href=\"https://arxiv.org/abs/1606.06650\">https://arxiv.org/abs/1606.06650</a>)</li>\n</ul>\n\n<p>The procedure generates a coarse displacement grid with a random displacement for each grid point. This grid is then interpolated to compute a displacement for each pixel in the input image. The input image is then deformed using the displacement vectors and a spline interpolation.</p>\n\n<p>In addition to the normal, forward deformation, this package also provides a function that can backpropagate the gradient through the deformation. This makes it possible to use the deformation as a layer in a convolutional neural network. For convenience, a TensorFlow wrapper is provided in <code>elasticdeform.tf</code>.</p>\n\n<p>See <a href=\"https://github.com/gvtulder/elasticdeform\">https://github.com/gvtulder/elasticdeform</a></p>", "license": "", "creator": [ { "@id": "https://orcid.org/0000-0003-1635-5423", "@type": "Person", "name": "Gijs van Tulder" } ], "url": "https://zenodo.org/record/4569691", "codeRepository": "https://github.com/gvtulder/elasticdeform/tree/v0.4.9", "datePublished": "2021-03-01", "version": "v0.4.9", "@context": "https://schema.org/", "identifier": "https://doi.org/10.5281/zenodo.4569691", "@id": "https://doi.org/10.5281/zenodo.4569691", "@type": "SoftwareSourceCode", "name": "elasticdeform: Elastic deformations for N-dimensional images" }
All versions | This version | |
---|---|---|
Views | 188 | 157 |
Downloads | 7 | 6 |
Data volume | 877.6 kB | 752.3 kB |
Unique views | 138 | 123 |
Unique downloads | 6 | 5 |