Software Open Access
{ "publisher": "Zenodo", "DOI": "10.5281/zenodo.4569691", "title": "elasticdeform: Elastic deformations for N-dimensional images", "issued": { "date-parts": [ [ 2021, 3, 1 ] ] }, "abstract": "<p>This library implements elastic grid-based deformations for N-dimensional images.</p>\n\n<p>The elastic deformation approach is described in</p>\n\n<ul>\n\t<li>Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation" (<a href=\"https://arxiv.org/abs/1505.04597\">https://arxiv.org/abs/1505.04597</a>)</li>\n\t<li>Çiçek et al., "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" (<a href=\"https://arxiv.org/abs/1606.06650\">https://arxiv.org/abs/1606.06650</a>)</li>\n</ul>\n\n<p>The procedure generates a coarse displacement grid with a random displacement for each grid point. This grid is then interpolated to compute a displacement for each pixel in the input image. The input image is then deformed using the displacement vectors and a spline interpolation.</p>\n\n<p>In addition to the normal, forward deformation, this package also provides a function that can backpropagate the gradient through the deformation. This makes it possible to use the deformation as a layer in a convolutional neural network. For convenience, a TensorFlow wrapper is provided in <code>elasticdeform.tf</code>.</p>\n\n<p>See <a href=\"https://github.com/gvtulder/elasticdeform\">https://github.com/gvtulder/elasticdeform</a></p>", "author": [ { "family": "Gijs van Tulder" } ], "version": "v0.4.9", "type": "article", "id": "4569691" }
All versions | This version | |
---|---|---|
Views | 188 | 157 |
Downloads | 7 | 6 |
Data volume | 877.6 kB | 752.3 kB |
Unique views | 138 | 123 |
Unique downloads | 6 | 5 |