Software Open Access

elasticdeform: Elastic deformations for N-dimensional images

Gijs van Tulder


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.4569691", 
  "title": "elasticdeform: Elastic deformations for N-dimensional images", 
  "issued": {
    "date-parts": [
      [
        2021, 
        3, 
        1
      ]
    ]
  }, 
  "abstract": "<p>This library implements elastic grid-based deformations for N-dimensional images.</p>\n\n<p>The elastic deformation approach is described in</p>\n\n<ul>\n\t<li>Ronneberger, Fischer, and Brox, &quot;U-Net: Convolutional Networks for Biomedical Image Segmentation&quot; (<a href=\"https://arxiv.org/abs/1505.04597\">https://arxiv.org/abs/1505.04597</a>)</li>\n\t<li>&Ccedil;i&ccedil;ek et al., &quot;3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation&quot; (<a href=\"https://arxiv.org/abs/1606.06650\">https://arxiv.org/abs/1606.06650</a>)</li>\n</ul>\n\n<p>The procedure generates a coarse displacement grid with a random displacement for each grid point. This grid is then interpolated to compute a displacement for each pixel in the input image. The input image is then deformed using the displacement vectors and a spline interpolation.</p>\n\n<p>In addition to the normal, forward deformation, this package also provides a function that can backpropagate the gradient through the deformation. This makes it possible to use the deformation as a layer in a convolutional neural network. For convenience, a TensorFlow wrapper is provided in&nbsp;<code>elasticdeform.tf</code>.</p>\n\n<p>See <a href=\"https://github.com/gvtulder/elasticdeform\">https://github.com/gvtulder/elasticdeform</a></p>", 
  "author": [
    {
      "family": "Gijs van Tulder"
    }
  ], 
  "version": "v0.4.9", 
  "type": "article", 
  "id": "4569691"
}
188
7
views
downloads
All versions This version
Views 188157
Downloads 76
Data volume 877.6 kB752.3 kB
Unique views 138123
Unique downloads 65

Share

Cite as