Video/Audio Open Access

Building and maintaining a solar tachocline through convective dynamo action

Matilsky, Loren Isaac; Toomre, Juri


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000ngm##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bice, Connor, &amp; Toomre, Juri. (2018). Exploring the Role of a Tachocline in M-Dwarf Magnetism. Presented at the The 20th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CS20). http://doi.org/10.5281/zenodo.1410681</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bice, Connor  &amp; Toomre, Juri (2020). Probing the influence of a tachocline in simulated M-dwarf dynamos, The Astrophysical Journal, 893, 107</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Featherstone, N. A., &amp; Hindman, B. W. (2016). The Spectral Amplitude of Stellar Convection and Its Scaling in the High-Rayleigh-number Regime, ApJ, 818, 32</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Nicholas Featherstone. (2018, April 28). geodynamics/Rayleigh: Bug-Fix-Release: 0.9.1 (Version v0.9.1). Zenodo. http://doi.org/10.5281/zenodo.1236565</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Ferraro, V. C. A. (1937). The Non-uniform Rotation of the Sun and its Magnetic Field, Monthly Notices of the Royal Astronomical Society, 97, 458</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Gough, Douglas O., &amp; McIntyre, Michael E. (1998). Inevitability of a magnetic field in the Sun's radiative interior, Nature, 394, 755</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bradley W. Hindman et al (2020). Morphological Classification of the Convective Regimes in Rotating Stars, ApJ 898 120</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Howe, Rachel, et al. (2000). Dynamic variations at the base of the solar convection zone, Science, 287, 2456</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Matilsky, Loren I., Hindman, Bradley W., &amp; Toomre, Juri. (2018). Exploring the Influence of Density Contrast on Solar Near-Surface Shear. Presented at the The 20th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CS20), Boston, MA: Zenodo. http://doi.org/10.5281/zenodo.1476707</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Matilsky, Loren I., Hindman, Bradley W., &amp; Toomre, Juri (2019). The role of downflows in establishing solar nearsurface shear, The Astrophysical Journal, 871, 217</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Matilsky, Loren I. &amp; Toomre, Juri (2020). Exploring bistability in the cycles of the solar dynamo through global simulations, The Astrophysical Journal, 892, 106</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Matilsky, Loren I., Hindman, Bradley W., &amp; Toomre, Juri (2020). Revisiting the Sun's strong differential rotation along radial lines", The Astrophysical Journal, 898, 111</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., et al. (2016). Performance benchmarks for a next generation numerical dynamo model, GGG, 17, 1586</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Speigel, Edward A., &amp; Zahn, Jean-Paul (1992). The solar tachocline, Astronomy &amp; Astrophysics, 265, 106</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">The Sun and the Heliosphere; Solar dynamo; solar rotation; solar convection; magnetohydrodynamics; helioseismology</subfield>
  </datafield>
  <controlfield tag="005">20210514185652.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Computational Resources for this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. 

Rayleigh has been developed by Nicholas Featherstone with support by the NSF through the Computational Infrastructure for Geodynamics (CIG).  This effort was supported by NSF grants NSF-0949446 and NSF-1550901. See the referenced publications by Featherstone et al., Hindman et al., and Matsui et al. for more details. 

This work is funded by NASA grant 80NSSC18K1127.</subfield>
  </datafield>
  <controlfield tag="001">4568544</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">March 2-4, 2021</subfield>
    <subfield code="g">CS20.5</subfield>
    <subfield code="a">The 20.5th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun</subfield>
    <subfield code="c">virtually anywhere</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">JILA &amp; Dept. Astrophysical and Planetary Sciences, University of Colorado Boulder</subfield>
    <subfield code="0">(orcid)0000-0002-3125-4463</subfield>
    <subfield code="a">Toomre, Juri</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="4">edt</subfield>
    <subfield code="a">Wolk, Scott</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">49045079</subfield>
    <subfield code="z">md5:9923cd3b37ca6dac79d58b69cacabde5</subfield>
    <subfield code="u">https://zenodo.org/record/4568544/files/Matilsky_L.mp4</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6572481</subfield>
    <subfield code="z">md5:4cb2c5763d04a51a358e509d1ad17630</subfield>
    <subfield code="u">https://zenodo.org/record/4568544/files/Matilsky_L_poster-v3.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://coolstars20.cfa.harvard.edu/cs20half</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-02-27</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-coolstars20half</subfield>
    <subfield code="o">oai:zenodo.org:4568544</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">JILA &amp; Dept. Astrophysical and Planetary Sciences, University of Colorado Boulder</subfield>
    <subfield code="0">(orcid)0000-0001-9001-6118</subfield>
    <subfield code="a">Matilsky, Loren Isaac</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Building and maintaining a solar tachocline through convective dynamo action</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-coolstars20half</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">0949446</subfield>
    <subfield code="a">Geoinformatics: Facility Support: Computational Infrastructure for Geodynamics</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The dynamical maintenance of the Sun&amp;rsquo;s tachocline of rotational shear remains one of the outstanding mysteries of solar physics. We present a series of three-dimensional MHD anealastic simulations in rotating spherical shells that for the first time achieve a tachocline self-consistently, in which a dynamo operates within both the convection zone and underlying stable region. With the introduction of a small, random seed magnetic field to a hydrodynamic progenitor, the initially differentially rotating radiative interior is forced into solid-body rotation by a convectively excited dynamo, and afterward is maintained for centuries-long timescales. The overall result is similar in spirit to one of the &amp;ldquo;main contenders&amp;rdquo; for tachocline confinement&amp;mdash;Gough and McIntyre (1998)&amp;mdash;in which a primordial magnetic field stops the inward radiative spreading of the differential rotation. However, these new simulations using the Rayleigh code make no assumptions about the Sun&amp;rsquo;s fossil interior magnetic field. They thus offer a possibly more realistic magnetic confinement scenario for the tachocline that is here shown to be achieved by a fully nonlinear MHD convective dynamo operating in the solar interior.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a">10.5281/zenodo.4750776</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">arxiv</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a">arXiv:2105.05412</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4567603</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4568544</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">video</subfield>
  </datafield>
</record>
67
61
views
downloads
All versions This version
Views 6745
Downloads 6149
Data volume 825.6 MB619.4 MB
Unique views 4836
Unique downloads 4841

Share

Cite as