Poster Open Access

Inferring Plasma Flows in the Solar Photosphere & Chromosphere using Deep Learning and Surface Observations

Tremblay, Benoit; Reardon, Kevin; Attié, Raphaël; Kazachenko, Maria; Asensio Ramos, Andrés; Tilipman, Dennis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep Learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Granulation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">MHD Simulations</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Sun</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Velocities</subfield>
  </datafield>
  <controlfield tag="005">20210227002715.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Recording available for viewing: https://www.dropbox.com/s/f4x1mchlnb1cjh2/zoom_0.mp4?dl=0</subfield>
  </datafield>
  <controlfield tag="001">4566357</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NSO</subfield>
    <subfield code="a">Reardon, Kevin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NASA GSFC, GMU</subfield>
    <subfield code="a">Attié, Raphaël</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">LASP, CU Boulder, NSO</subfield>
    <subfield code="a">Kazachenko, Maria</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IAC</subfield>
    <subfield code="a">Asensio Ramos, Andrés</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CU Boulder</subfield>
    <subfield code="a">Tilipman, Dennis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6640357</subfield>
    <subfield code="z">md5:09c3995e0a031945ad49624f30701e9b</subfield>
    <subfield code="u">https://zenodo.org/record/4566357/files/IBIS_CS205.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-02-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-coolstars20half</subfield>
    <subfield code="o">oai:zenodo.org:4566357</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">LASP, CU Boulder, NSO</subfield>
    <subfield code="a">Tremblay, Benoit</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Inferring Plasma Flows in the Solar Photosphere &amp; Chromosphere using Deep Learning and Surface Observations</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-coolstars20half</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Direct measurements of plasma motions are limited to the line-of-sight component at the Sun&amp;#39;s surface. Multiple tracking and inversion methods were developed to infer the transverse motions from observational data. Recently, the fully convolutional DeepVel &amp;amp; DeepVelU neural networks were trained in conjunction with detailed magnetohydrodynamics (MHD) simulations of the Quiet Sun and sunspots to recover the instantaneous depth/height-dependent transverse velocity vector from a combination of intensitygrams, magnetograms and/or Dopplergrams of the solar surface. Through this supervised learning approach, the neural network attempts to emulate the synthetic flows, and by extension the physics, from the numerical simulation it was presented during its training, i.e. its outputs are model-dependent and may be subjected to biases. Although simulations have become increasingly realistic, the validity of flows inferred by DeepVel or DeepVelU is subject to debate when using real observational data as input. As a test, we use white light images of the Quiet Sun photosphere (optical depth tau=1) produced by the Interferometric BIdimensional Spectropolarimeter (IBIS) installed at the Dunn Solar Telescope to infer plasma motions approx. 150-200 km above the surface (i.e., near the transition between the photosphere and the chromosphere) using DeepVel. We discuss work in progress comparing the neural network estimates to the optical flows determined from a time series of observational data formed near 150-200 km above the surface. Optical flows do not directly track actual transverse plasma motions, but are correlated with physical flows over certain spatial and temporal scales.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4566356</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4566357</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
67
53
views
downloads
All versions This version
Views 6767
Downloads 5353
Data volume 351.9 MB351.9 MB
Unique views 5959
Unique downloads 4949

Share

Cite as