There is a newer version of this record available.

Poster Open Access

3D MHD simulations of an accreting young star

Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Kulkarni, A. K. and Romanova, M. M. (2008). Accretion to magnetized stars through the Rayleigh-Taylor instability: global 3D simulations</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Takasao, Shinsuke et al. (2018). A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Takasao, Shinsuke et al. (2019). Giant Protostellar Flares: Accretion-driven Accumulation and Reconnection-driven Ejection of Magnetic Flux in Protostars</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Cauley, P. Wilson; Johns-Krull, Christopher M. (2014). Diagnosing Mass Flows around Herbig Ae/Be Stars Using the He I λ10830 Line</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Stone, James M. et al. (2020). The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Young stars</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Magnetospheric accretion</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">MHD simulations</subfield>
  </datafield>
  <controlfield tag="005">20210227072848.0</controlfield>
  <controlfield tag="001">4565629</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">March 2-4, 2021</subfield>
    <subfield code="g">CS20.5</subfield>
    <subfield code="a">The 20th (and a half) Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun</subfield>
    <subfield code="c">virtually anywhere</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tohoku University</subfield>
    <subfield code="a">Tomida, Kengo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Astronomical Observatory of Japan</subfield>
    <subfield code="a">Iwasaki, Kazunari</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Tokyo</subfield>
    <subfield code="a">Suzuki, Takeru</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="4">edt</subfield>
    <subfield code="a">Wolk, Scott</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6090735</subfield>
    <subfield code="z">md5:53e691335687c59c06d54d53eeac4285</subfield>
    <subfield code="u">https://zenodo.org/record/4565629/files/coolstars20.5_takasao_poster.pdf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">962091</subfield>
    <subfield code="z">md5:bcecd69dcc43fc7c7152e4c8ce45846a</subfield>
    <subfield code="u">https://zenodo.org/record/4565629/files/title_takasao.png</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://coolstars20.cfa.harvard.edu/cs20half/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-02-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-coolstars20half</subfield>
    <subfield code="o">oai:zenodo.org:4565629</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Osaka University</subfield>
    <subfield code="0">(orcid)0000-0003-3882-3945</subfield>
    <subfield code="a">Takasao, Shinsuke</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">3D MHD simulations of an accreting young star</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-coolstars20half</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Young stars such as protostars and pre-main-sequence stars evolve via the interaction with the surrounding accretion disks. It is believed that stellar and disk magnetic fields play important roles in shaping the accretion structure and exchanging the angular momentum between the stars and the disks. However, because of the complexity of gas dynamics around the stars, the star-disk interaction remains poorly understood, which makes the construction of the stellar evolution models difficult. To reveal the interaction processes, we have been performing 3D magnetohydrodynamic simulations of accretion onto a young star with different stellar magnetic fields. In the case of a weakly magnetized, magnetosphere-free star, we found that failed disk wind&amp;nbsp;becomes supersonic, high-latitude accretion flows onto the star (Takasao et al. 2018). This result may explain the reason why Herbig Ae/Be stars show fast accretion. In a different model with stronger disk fields, we showed that the star can produce recurrent explosions via magnetic reconnection (Takasao et al. 2019). We consider that the mechanism is relevant to protostellar flares in class-0/I protostars. In addition to the above two models, we have been investigating the magnetospheric accretion which is very relevant to classical T-Tauri stars. In this talk, we will introduce our 3D modeling and discuss how the star-disk interaction changes depending on the stellar and disk field strengths.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">cites</subfield>
    <subfield code="a">10.3847/2041-8213/ab22bb</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">cites</subfield>
    <subfield code="a">10.3847/1538-4357/aab5b3</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4565628</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4565629</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
84
98
views
downloads
All versions This version
Views 8411
Downloads 9813
Data volume 167.7 MB74.1 MB
Unique views 779
Unique downloads 9011

Share

Cite as