There is a newer version of this record available.

Poster Open Access

3D MHD simulations of an accreting young star

Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.4565629</identifier>
      <creatorName>Takasao, Shinsuke</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0003-3882-3945</nameIdentifier>
      <affiliation>Osaka University</affiliation>
      <creatorName>Tomida, Kengo</creatorName>
      <affiliation>Tohoku University</affiliation>
      <creatorName>Iwasaki, Kazunari</creatorName>
      <affiliation>National Astronomical Observatory of Japan</affiliation>
      <creatorName>Suzuki, Takeru</creatorName>
      <affiliation>University of Tokyo</affiliation>
    <title>3D MHD simulations of an accreting young star</title>
    <subject>Young stars</subject>
    <subject>Magnetospheric accretion</subject>
    <subject>MHD simulations</subject>
    <date dateType="Issued">2021-02-26</date>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="Cites">10.3847/2041-8213/ab22bb</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="Cites">10.3847/1538-4357/aab5b3</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4565628</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;Young stars such as protostars and pre-main-sequence stars evolve via the interaction with the surrounding accretion disks. It is believed that stellar and disk magnetic fields play important roles in shaping the accretion structure and exchanging the angular momentum between the stars and the disks. However, because of the complexity of gas dynamics around the stars, the star-disk interaction remains poorly understood, which makes the construction of the stellar evolution models difficult. To reveal the interaction processes, we have been performing 3D magnetohydrodynamic simulations of accretion onto a young star with different stellar magnetic fields. In the case of a weakly magnetized, magnetosphere-free star, we found that failed disk wind&amp;nbsp;becomes supersonic, high-latitude accretion flows onto the star (Takasao et al. 2018). This result may explain the reason why Herbig Ae/Be stars show fast accretion. In a different model with stronger disk fields, we showed that the star can produce recurrent explosions via magnetic reconnection (Takasao et al. 2019). We consider that the mechanism is relevant to protostellar flares in class-0/I protostars. In addition to the above two models, we have been investigating the magnetospheric accretion which is very relevant to classical T-Tauri stars. In this talk, we will introduce our 3D modeling and discuss how the star-disk interaction changes depending on the stellar and disk field strengths.&lt;/p&gt;</description>
    <description descriptionType="Other">{"references": ["Kulkarni, A. K. and Romanova, M. M. (2008). Accretion to magnetized stars through the Rayleigh-Taylor instability: global 3D simulations", "Takasao, Shinsuke et al. (2018). A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star", "Takasao, Shinsuke et al. (2019). Giant Protostellar Flares: Accretion-driven Accumulation and Reconnection-driven Ejection of Magnetic Flux in Protostars", "Cauley, P. Wilson; Johns-Krull, Christopher M. (2014). Diagnosing Mass Flows around Herbig Ae/Be Stars Using the He I \u03bb10830 Line", "Stone, James M. et al. (2020). The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers"]}</description>
All versions This version
Views 8511
Downloads 9913
Data volume 168.9 MB74.1 MB
Unique views 789
Unique downloads 9111


Cite as