Poster Open Access

Magnetic Braking of Accreting T Tauri Stars: Effects of Mass Accretion Rate, Rotation, and Dipolar Field Strength

Ireland, Lewis G.; Zanni, Claudio; Matt, Sean P.; Pantolmos, George

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.4565111</identifier>
      <creatorName>Ireland, Lewis G.</creatorName>
      <givenName>Lewis G.</givenName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0002-8833-1204</nameIdentifier>
      <affiliation>University of Exeter</affiliation>
      <creatorName>Zanni, Claudio</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0003-0204-8190</nameIdentifier>
      <affiliation>INAF-Osservatorio Astrofisico di Torino</affiliation>
      <creatorName>Matt, Sean P.</creatorName>
      <givenName>Sean P.</givenName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0001-9590-2274</nameIdentifier>
      <affiliation>University of Exeter</affiliation>
      <creatorName>Pantolmos, George</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0001-7788-3727</nameIdentifier>
      <affiliation>Univ. Grenoble Alpes</affiliation>
    <title>Magnetic Braking of Accreting T Tauri Stars: Effects of Mass Accretion Rate, Rotation, and Dipolar Field Strength</title>
    <subject>Young stars</subject>
    <subject>Stellar winds</subject>
    <subject>Stellar evolution</subject>
    <subject>Stellar magnetic fields</subject>
    <subject>Stellar rotation</subject>
    <subject>Magnetohydrodynamical simulations</subject>
    <subject>Pre-main-sequence stars</subject>
    <subject>Stellar accretion</subject>
    <subject>Classical T Tauri stars</subject>
    <subject>Stellar accretion disks</subject>
    <date dateType="Issued">2021-02-26</date>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4565110</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;The rotational evolution of an accreting pre-main-sequence star is influenced by its magnetic interaction with its surrounding circumstellar disk. Using the PLUTO code, we perform 2.5D magnetohydrodynamic, axisymmetric, time-dependent simulations of star&amp;ndash;disk interaction&amp;mdash;with an initial dipolar magnetic field structure, and a viscous and resistive accretion disk&amp;mdash;in order to model the three mechanisms that contribute to the net stellar torque: accretion flow, stellar wind, and magnetospheric ejections (periodic inflation and reconnection events). We investigate how changes in the stellar magnetic field strength, rotation rate, and mass accretion rate (changing the initial disk density) affect the net stellar torque. All simulations are in a net spin-up regime. We fit semi-analytic functions for the three stellar torque contributions, allowing for the prediction of the net stellar torque for our parameter regime, as well as the possibility of investigating spin evolution using 1D stellar evolution codes. The presence of an accretion disk appears to increase the efficiency of stellar torques compared to isolated stars, for cases with outflow rates much smaller than accretion rates, because the star&amp;ndash;disk interaction opens more of the stellar magnetic flux compared to that from isolated stars. In our parameter regime, a stellar wind with a mass-loss rate of &amp;asymp;1% of the mass accretion rate is capable of extracting &amp;lt;=50% of the accreting angular momentum. These simulations suggest that achieving spin equilibrium in a representative T Tauri case within our parameter regime, e.g., BP Tau, would require a wind mass-loss rate of &amp;asymp;25% of the mass accretion rate.&lt;/p&gt;</description>
    <description descriptionType="Other">{"references": ["Camenzind, M. 1990, RvMA, 3, 234", "Bouvier, J., Cabrit, S., Fernandez, M., Martin, E. L., &amp; Matthews, J. M. 1993, A&amp;A, 272, 176", "Edwards, S., Hartigan, P., Ghandour, L., &amp; Andrulis, C. 1994, AJ, 108, 1056", "Edwards, S., Strom, S. E., Hartigan, P., et al. 1993, AJ, 106, 372", "Gullbring, E., Hartmann, L., Brice\u00f1o, C., &amp; Calvet, N. 1998, ApJ, 492, 323", "Ireland, L. G., Zanni, C., Matt, S. P., &amp; Pantolmos, G. 2020, ApJ, 906(1), 4", "Koenigl, A. 1991, ApJL, 370, L39", "Rebull, L. M., Wolff, S. C., &amp; Strom, S. E. 2004, AJ, 127, 1029"]}</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/682393/">682393</awardNumber>
      <awardTitle>Accretion, Winds, and Evolution of Spins and Magnetism of Stars</awardTitle>
All versions This version
Views 6464
Downloads 8484
Data volume 649.2 MB649.2 MB
Unique views 6161
Unique downloads 7575


Cite as