
1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

A DEMOGRAPHICS SLR
See Figures 3, 4, 5.

Figure 3: Distribution of manually inspected and used arti-
cles grouped by source.

ACM DL

IEEE Xplore

ScienceDirect

Scopus
Google

GoogleScholar

Snowball

0

5

10

15

20

25

30 Inspected
Used

Source

Pe
rc

en
ta

ge
 o

f 
ar

ti
cl

es

Figure 4: Distribution of manually inspected and used arti-
cles grouped by publication year.
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Figure 5: Distribution of manually inspected and used arti-
cles grouped by publication type.
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See Table 6.

Source Title Used

ACM DL A framework for managing uncertainty in software architecture 0
ACM DL A Report on the First Workshop on Software Engineering for Arti�cial Intelligence (SE4AI 2020) 0
ACM DL Achieving guidance in applied machine learning through software engineering techniques 1
ACM DL Deep learning UI design patterns of mobile apps 0
ACM DL Designing the Software Systems of the Future 1
ACM DL Do you want to become an AI and machine learning software engineer? 0
ACM DL Does �xing bug increase robustness in deep learning? 0
ACM DL Emerging and Changing Tasks in the Development Process for Machine Learning Systems 1
ACM DL Hacking Machine Learning 0
ACM DL Intelligent Software Engineering: Synergy Between AI and Software Engineering 0
ACM DL Keeping intelligence under control 0
ACM DL Robustness testing of autonomy software 0
ACM DL Software Engineering for distributed autonomous real-time systems 0
ACM DL Software Engineering for Machine Learning: A Case Study 1
ACM DL Taxonomy of real faults in deep learning systems 0
ACM DL Teaching software engineering for AI-enabled systems 0
ACM DL Toward a holistic software systems engineering approach for dependable autonomous systems 1
ACM DL Towards classes of architectural dependability assurance for machine-learning-based systems 1
ACM DL Tutorial on Software Testing & Quality Assurance for Machine Learning Applications 0
ACM DL Self-organizing infrastructure for machine (deep) learning at scale 0
ACM DL Sensemaking Practices in the Everyday Work of AI/ML Software Engineering 1

IEEE Xplore A Bird’s Eye View on Requirements Engineering and Machine Learning 0
IEEE Xplore A detailed survey of Arti�cial Intelligence and Software Engineering: Emergent Issues 0
IEEE Xplore A Safe, Secure, and Predictable Software Architecture for Deep Learning in Safety-Critical Systems 0
IEEE Xplore A survey of software quality for machine learning applications 0
IEEE Xplore AI Safety Landscape From short-term speci�c system engineering to long-term arti�cial general intelligence 0
IEEE Xplore Analysis of Software Engineering for Agile Machine Learning Projects 0
IEEE Xplore Can AI close the design-code abstraction gap? 0
IEEE Xplore Deep learning development review 0
IEEE Xplore Designing Safety Critical Software Systems to Manage Inherent Uncertainty 1
IEEE Xplore How Do Engineers Perceive Di�culties in Engineering of Machine-Learning Systems? - Questionnaire Survey 1
IEEE Xplore How does Machine Learning Change Software Development Practices? 1
IEEE Xplore Improved Self-Management Architecture in Self-Adaptive System 0
IEEE Xplore What is AI software testing? And why? 0
IEEE Xplore Requirements engineering challenges in building AI-based complex systems 1
IEEE Xplore Security engineering for machine learning 1
IEEE Xplore Software engineering challenges of deep learning 1
IEEE Xplore Software Engineering for Machine-Learning Applications: The Road Ahead 0
IEEE Xplore Studying Software Engineering Patterns for Designing Machine Learning Systems 1
IEEE Xplore Testing and Quality Validation for AI Software–Perspectives, Issues, and Practices 0
IEEE Xplore Towards concept based software engineering for intelligent agents 0
IEEE Xplore Uncertain requirements, assurance and machine learning 1
IEEE Xplore Understanding Development Process of Machine Learning Systems: Challenges and Solutions 1

Science Direct Assessing the drivers of machine learning business value 0
Science Direct AI service system development using enterprise architecture modeling 0

Scopus Big Data Analytics in Building the Competitive Intelligence of Organizations 0
Scopus Complex, Intensive Systems and Software Intelligent 0

Google Scholar A test architecture for machine learning product 1
Google Scholar An Analysis of ISO 26262: Using Machine Learning Safely in Automotive Software 0
Google Scholar An overview of next-generation architectures for machine learning: Roadmap, opportunities and challenges in

the IoT era
0
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Google Scholar SNaP ML: A hierarchical framework for machine learning 0
Google Scholar Software Architecture Design of the Real-Time Processes Monitoring Platform 1
Google Scholar Software Architecture in a Changing World 1
Google Scholar Solution Patterns for Machine Learning 0

Google A Taxonomy of Software Engineering Challenges for Machine Learning Systems: An Empirical Investigation 1
Google Continuous Delivery for Machine Learning 1
Google Demystifying Data Lake Architecture 1
Google Deploy, Connect and Execute Scienti�c Models 0
Google Ethics guidelines for trustworthy AI 1
Google Hidden technical debt in machine learning systems 1
Google The National Arti�cial Intelligence Research and Development Strategic Plan: 2019 Update 1
Google ML Reference Architecture 1
Google Machine Learning Architecture and Design Patterns 1
Google Method for Assessing the Applicability of AI Service Systems 0
Google Requirements for Trustworthy Arti�cial Intelligence – A Review 1
Google Software Engineering Practice in the Development of Deep Learning Applications 1

Snowball A Design Pattern for Machine Learning with Scala, Spray and Spark 1
Snowball AI Engineering: 11 Foundational Practices 1
Snowball Adoption and E�ects of Software Engineering Best Practices in Machine Learning 1
Snowball ClearTK 2.0: Design patterns for machine learning in UIMA 0
Snowball Continuous Training for Production ML in the TensorFlow Extended (TFX) Platform 1
Snowball Data Validation for Machine Learning 1
Snowball Daisy Architecture 1
Snowball Expanding AI’s impact with organisational learning 0
Snowball Machine learning at Facebook: Understanding inference at the edge 1
Snowball Machine Learning Software Engineering in Practice: An Industrial Case Study 1
Snowball Machine Learning System Architectural Pattern for Improving Operational Stability 1
Snowball Patterns (and Anti-Patterns) for Developing Machine Learning Systems 1
Snowball Rules of Machine Learning 1
Snowball Towards using probabilistic models to design software systems with inherent uncertainty 1
Snowball Scaling distributed machine learning with the parameter server 0
Snowball Scaling Machine Learning as a Service 1

Table 6: Manually inspected and used articles.
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C DATA EXTRACTION SLR
See Table 7.

Table 7: Data items extracted from each article.

ID Data Item Description RQ

1 Title The title of the article. Demographics
2 Year The publication year. Demographics
3 Venue The publication venue name. Demographics
4 Context Academic or Industry. Demographics
5 Source Retrieval source. Demographics
6 Research type Type of research – e.g., validation research, evaluation research, opinion article. Demographics.
7 Challenges Documents the challenges reported in (re-) designing software with ML compo-

nents.
RQ1

8 Tactics, Practices or Patterns Documents the tactics, practices or patterns reported to meet challenges in (re-)
designing software with ML components.

RQ2

9 Data type The data type used in ML. Data
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D SOLUTIONS EXTRACTED FROM THE SLR
See Table 8.
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Table 8: List of SA challenges for ML and related solutions as extracted from the SLR.

Nr. Category Challenges Solutions References

1 Reqs. At design time the information available is insu�cient
to understand the customers or the projects.

Measure and document uncertainty sources. [10, 16,
29, 39, 40,
66]

2 Reqs. ML components lack functional requirements. Use metrics as functional requirements. Include under-
standability and explainability of the outputs.

[10, 16,
19, 29, 40,
66]

3 Reqs. ML projects have regulatory restrictions and may be
subject to audits.

Analyse regulatory constraints up-front. Adopt an AI
code of conduct. Design audit trails.

[23, 32,
47, 63]

4 Data Data preparation may result in a jungle of scrapes, joins,
and sampling steps, often with intermediate outputs.

Design separate modules/services for data collection
and data preparation.

[19, 38,
58]

5 Data Data quality is hard to test, and may have unexpected
consequences.

Design separate modules/services for data quality as-
sessment.

[19, 38,
43, 52, 75]

6 Design Separate concerns between training, testing, and serv-
ing, but reuse code between them.

Standardise model interfaces. [2, 72, 76]

7 Design Distinguish failures betweenML components and other
business logic.

Separate business logic from ML components. [53, 73]

8 Design ML components are highly coupled, and errors can have
cascading e�ects.

Design independent modules/services for ML and data.
Relax coupling heuristics between ML and data.

[27, 49,
66]

9 Design ML components bring inherent uncertainty to a system. Design and monitor uncertainty metrics. [3, 27, 49,
62, 64]

10 Design ML components can fail silently. These failures can be
hard to detect, isolate and solve.

Use metric monitoring and alerts to detect failures. [11, 64,
71]

11 Design ML components are intrinsically opaque, and deduc-
tive reasoning from the architecture artefacts, code or
metadata is not e�ective.

Instrument the system to the fullest extent. Design log
modules to aggregate/visualise metrics.

[27, 49,
57, 76]

12 Design Avoid unstructured components which link frame-
works or APIs (e.g., glue code).

Wrap components in APIs/modules/services. [58]

13 Design Automation and understanding of ML tasks is di�cult
(AutoML).

Version con�guration �les. Design the log and version-
ing systems to support AutoML data retrieval.

[38, 55,
63, 66, 72]

14 Testing ML testing goes beyond programming bugs to issues
that arise from model, data errors, or uncertainty.

Design model and data tests. Use CI/CD. [2, 4, 48,
54, 75]

15 Testing Validation of ML components for production is di�cult. Use metrics and CI/CD for validation. Use alerts, visu-
alisations.

[56]

16 Ops. ML components require continuous maintenance, re-
training and evolution.

Design for automatic continuous retraining. Use CI/CD.
Use automatic rollback.

[8, 39, 49,
56, 66, 68,
75]

17 Ops. Manage the dependencies and consumers of ML appli-
cations.

Use authentication and access control. Log consumers
of ML components.

[7, 22, 27,
58, 73]

18 Ops. Balance latency, throughput, and fault-tolerance,
needed for training and serving.

Design for batch processing (training) and stream pro-
cessing (serving), i.e., lambda architecture. Physically
isolate the workloads.

[15, 38,
45, 67, 72]
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E DATA INTERVIEWS
See Figures 6, 7, 8.

Figure 6: Distribution of data types used by interview partic-
ipants.
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Figure 7: Distribution of architectural decision drivers from
interviews.
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Figure 8: Distribution of architectural decision drivers
grouped by data type.
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Figure 9: Themes extracted for challenge 1.
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Figure 10: Themes extracted for challenge 2.
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Figure 11: Themes extracted for challenge 4.
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Figure 12: Themes extracted for challenge 5.
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Figure 13: Themes extracted for challenge 6.
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Figure 14: Themes extracted for challenge 7.
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Figure 15: Themes extracted for challenge 8.
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Figure 16: Themes extracted for challenge 9.
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Figure 17: Themes extracted for challenge 10.
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Figure 18: Themes extracted for challenge 11.
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Figure 19: Themes extracted for challenge 12.
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Figure 21: Themes extracted for challenge 14.

CI/CD
Model testing

Unit testing

Alerts
Data testing

Manual testing

Monitoring

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 22: Themes extracted for challenge 15.
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Figure 23: Themes extracted for challenge 16.
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Figure 24: Themes extracted for challenge 17.
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Figure 25: Themes extracted for challenge 18.
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Table 9: List of SA challenges and solutions after the interviews.

Nr. Category Challenges Solutions References

1 Reqs. At design time the information available is insu�cient
to understand the customers or the projects.

Run simulations to gather data. Use past experience.
Measure and document uncertainty sources.

[10, 16,
29, 39, 40,
66]

2 Reqs. ML components lack functional requirements. Use metrics as functional requirements. Include under-
standability and explainability of the outputs.

[10, 16,
19, 29, 40,
66]

3 Reqs. ML projects have regulatory restrictions and may be
subject to audits.

Analyse regulatory constraints up-front. Adopt an AI
code of conduct. Design audit trails.

[23, 32,
47, 63]

4 Data Data preparation may result in a jungle of scrapes, joins,
and sampling steps, often with intermediate outputs.

Design separate modules/services for data collection
and data preparation. Integrate external tools.

[19, 38,
58]

5 Data Data quality is hard to test, and may have unexpected
consequences.

Design separate modules/services for data quality as-
sessment. Integrate external tools.

[19, 38,
43, 52, 75]

6 Design Separate concerns between training, testing, and serv-
ing, but reuse code between them.

Standardise model interfaces. Use one middleware.
Reuse virtualisation, infrastructure and test scripts.

[2, 72, 76]

7 Design Distinguish failures betweenML components and other
business logic.

Separate business logic fromML components. Standard-
ise interfaces and use one middleware between them.

[53, 73]

8 Design ML components are highly coupled, and errors can have
cascading e�ects.

Design independent modules/services for ML and data.
Standardise interfaces and use one middleware. Relax
coupling heuristics between ML and data.

[27, 49,
66]

9 Design ML components bring inherent uncertainty to a system. Use n-versioning. Design and monitor uncertainty met-
rics. Employ interpretable models/human intervention.
Use self adaptation.

[3, 27, 49,
62, 64]

10 Design ML components can fail silently. These failures can be
hard to detect, isolate and solve.

Use metric monitoring and alerts to detect failures. Use
n-versioning. Employ interpretable models. Detect out
of distrribution data.

[11, 64,
71]

11 Design ML components are intrinsically opaque, and deduc-
tive reasoning from the architecture artefacts, code or
metadata is not e�ective.

Instrument the system to the fullest extent. Use n-
versioning. Employ interpretable models. Design log
modules to aggregate/visualise metrics.

[27, 49,
57, 76]

12 Design Avoid unstructured components which link frame-
works or APIs (e.g., glue code).

Wrap components in APIs/modules/services. Use stan-
dard interfaces and one middleware. Use virtualisation.

[58]

13 Design Automation and understanding of ML tasks is di�cult
(AutoML).

Version con�guration �les. Design the log and version-
ing systems to support AutoML data retrieval.

[38, 55,
63, 66, 72]

14 Testing ML testing goes beyond programming bugs to issues
that arise from model, data errors, or uncertainty.

Designmodel and data tests. Use CI/CD. Use integration
and unit tests. Use data ownership for test modules. Use
manual inspection.

[2, 4, 48,
54, 75]

15 Testing Validation of ML components for production is di�cult. Use metrics and CI/CD for validation. Use alerts, visual-
isations, human intervention. Design release processes.

[56]

16 Ops. ML components require continuous maintenance, re-
training and evolution.

Design for automatic continuous retraining. Use CI/CD.
Use automatic rollback. Use infrastructure-as-code.
Adopt standard release processes.

[8, 39, 49,
56, 66, 68,
75]

17 Ops. Manage the dependencies and consumers of ML appli-
cations.

Encapsulate ML components in identi�able mod-
ules/services. Use authentication and access control.
Log consumers of ML components.

[7, 22, 27,
58, 73]

18 Ops. Balance latency, throughput, and fault-tolerance,
needed for training and serving.

Design for batch processing (training) and stream pro-
cessing (serving), i.e., lambda architecture. Physically
isolate the workloads. Use virtualisation.

[15, 38,
45, 67, 72]

19 Ops. Trace back decisions to models, data and reproduce
past results.

Design for traceability and reproducibility; log pointers
to versioned artefacts, version con�gurations, models
and data.

P10

20 Org. ML applications use heterogeneous technology stacks
which require diverse backgrounds and skills.

Form multi-disciplinary teams. Adopt an AI code of
conduct. De�ne processes for decision-making. Raise
awareness about ML risks within the team.

P1
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Figure 26: Organisation type for survey participants.
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Figure 27: Experience of survey participants.
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Figure 28: Team size for survey participants.
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Figure 29: Data types used by survey participants.
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Figure 30: Deployment interval for survey participants.
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Figure 31: Regions for survey participants.
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I SOLUTIONS FROM SURVEY
See Figure 32 - 51.

Figure 32: Survey solutions to practice 1.
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Figure 33: Survey solutions to practice 2.
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Figure 34: Survey solutions to practice 3.
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Figure 35: Survey solutions to practice 4.
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Figure 36: Survey solutions to practice 5.
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Figure 37: Survey solutions to practice 6.
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 Yes, we reuse multiple modules/services

 Yes, we reuse test code

 No, for serving we use code

 not used in training
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Figure 38: Survey solutions to practice 7.
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Figure 39: Survey solutions to practice 8.

 We develop modules/services which

 can be integrated in

 multiple pipelines

 We use standardised interfaces

 We use one communication

 middleware

 We relax our design

 and allow component coupling
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Figure 40: Survey solutions to practice 9.

 We use multiple versions of

 the software (e.g., ensembles of

 models, n-versioning)

 We use uncertainty metrics and

 monitor the metric evolution

 We use interpretable models

 We use human intervention

 We use self-adaptation

 We do not take into

 account uncertainty of ML com
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Figure 41: Survey solutions to practice 10.
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Figure 42: Survey solutions to practice 11.

 We use instrumentation, monitoring or alerts

 We use multiple versions of the software

 (e.g., ensembles of modes, n-versioning)

 We use interpretable models

 We develop visualisation modu
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Figure 43: Survey solutions to practice 12.

 We use virtualisation

 We use one communication

 middleware

 We use standard interfaces
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Figure 44: Survey solutions to practice 13.

 We do not automate

 hyper-parameters, model creation or

 selection

 We version all configuration

 files

 We develop the logging

 module to support AutoML

 We develop the versioning

 system to support AutoML
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Figure 45: Survey solutions to practice 14.

 We use model testing

 We use data tests

 We automate tests

 We use unit testing

 We use integration testing

 We use manual inspection
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Figure 46: Survey solutions to practice 15.

 We use instrumentation, monitoring or alerts

 We use automatic validation through CI/CD

 We develop visualisation modules

 We use human intervention

 We define comprehensive release plans

 We develop anomaly detection mod

 We do not have a strategy
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Figure 47: Survey solutions to practice 16.

 We design for automatic,

 continuous retraining

 We use CI/CD

 We use automatic roll-back

 We use infrastructure-as-code

 We standardise release plans

 and procedures
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Figure 48: Survey solutions to practice 17.

 We encapsulate all consumers in identifiable

 modules/services

 We use authentication and access control

 mechanisms to trace back consumers

 We use the logging module to

 trace back consumers

 We do not have a strategy

 for it
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Figure 49: Survey solutions to practice 18.

 We use batch processing

 for training and stream

 processing for serving

 We physically isolate training

 and serving

 We use virtualisation (e.g.,

 Docker)

 We do not have

 a strategy for it
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Figure 50: Survey solutions to practice 19.

 We design for traceability and reproducibility

 We log pointers to versioned artefacts

 We version configuration files

 We version models and data

 We do not have a strategy

 for it
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Figure 51: Survey solutions to practice 20.

 We form multi-disciplinary teams inside the

 organisation

 We adopt a code of conduct

 We define processes for decision-making

 We raise awareness about ML risks

 within the team

 We do not have a strategy

 for it
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Figure 52: Survey solutions to instrumentation.

 We develop separate monitoring

 and logging modules/services

 We separate logging between

 training and serving

 We develop log aggregates

 and visualisation modules

 We use external tools
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Figure 53: Survey solutions to interview challenges, grouped
by team size.
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J THEME DESCRIPTION
Run simulations to gather data. When designing systems with

ML components, the information regarding data, the suitable ML
techniques, or the cost of infrastructure is incomplete. Moreover,
users have unrealistic expectations regarding the quality that ML
can provide, in relation to the resources available. To get a better
understanding of the project and detect issues as early as possible,
it is recommended to run simulations before de�ning the SA. The
simulations may include data �ows, running ML models on open
source data that resembles the project task, deploying and scaling
mock models, etc.

Use past experience. Expert opinion and past experience can be
used in designing systems with ML components. Nonetheless, past
experience should be paired with context information, as distinct
ML techniques have di�erent inherent requirements.

Measure and document uncertainty sources. To better evaluate
the resources available, and create accurate expectations regarding
the quality of ML components, it is recommended to measure and
document sources of uncertainty. For example, uncertainty regard-
ing data set size, data quality, regulatory constraints, number of
users, etc. In particular, the data set size and quality may lead to
bottlenecks early in the pipeline.

Use metrics as functional requirements. Compared to traditional
software, ML components lack clear functional requirements. To
overcome this drawback, it is recommended to use concrete, mea-
surable, metrics as functional requirements. Examples of metrics
are, accuracy, F1-score, but also metrics for trustworthy ML such
as robustness, bias, etc.

Include understandability and explainability of the outputs. When
translating requirements to measurable metrics, it is recommended
to include metrics for understandability and/or explainability of
the output of ML components. These metrics help to analyse and
understand the data and the ML components. Moreover, they help
shape future decisions such as choosing ML techniques suitable for
the task, fall-back mechanisms, n-versioning, etc.

Analyse regulatory constraints up-front. Although ML/AI speci�c
regulatory constraints are, at the moment, in draft phase, their
impact on systems with ML component is expected to grow in
the near future. By analysing the regulatory constraints upfront,
architects can prepare the system for compliance and audits. For
example, regulatory constraints may enforce privacy requirements,
which will translate to SA decisions for using privacy preserving
ML techniques, privacy data management methods, etc.

Adopt an AI code of conduct. AI code of conducts help shape
both a system and the organisation. For example, a code of conduct
can stipulate the responsible use of ML/AI, which will translate to
SA decisions for using interpretable models. Organisation wise, AI
code of conducts will guide the decision processes.

Design audit trails. Audit trails help to analyse and understand a
system, even without context knowledge. Since ML components
are intrinsically opaque, it is recommended to think of audit traces
when de�ning the SA. This process will help to de�ne separate

models to aggregate logs, provide visualisations, or automate re-
ports and audit traces. Moreover, it helps third parties to assess
compliance to regulatory constraints.

Design separate modules/services for data collection and data
preparation. Data collection and preparation are experimental pro-
cesses, which may result in a jungle of scrapes, joins and sampling
steps. Therefore, the modularity and reuse of data modules is dimin-
ished. In order to avoid high coupling and facilitate code reuse, it is
recommended to separate data collection and preparation into sep-
arate modules, which can be imported/deployed and orchestrated
independently.

Integrate external tools for data collection and preparation. Multi-
ple tools already provide data collection and preparation capabil-
ities (e.g., Snorkel1). In case the project does not have tight data
management constraints (e.g., privacy), architects can choose to
integrate external tools. When choosing the tools for these task,
architects must ensure they can be integrated with the system, and
orchestrated in di�erent services.

Design separate modules/services for data quality assessment. Data
quality assessment consists of testing the data for missing data
values, distribution skews, drifts, etc. In order to avoid coupling
between data components, it is recommended to separate data qual-
ity assessment in individual modules/services. The modules should
be independently imported/deployed and integrated in multiple
pipelines, ensuring modularity and reusability.

Standardise model interfaces. To facilitate interoperability and
reusability between training and serving, it is recommended to
package ML models in standard interfaces. Choosing an interface
type is project speci�c, and can include REST APIs, gRPCs, etc.
Nonetheless, the models’ interfaces should be the same as the in-
terfaces for other components in the system.

Use one middleware. To enhance interoperability between ML
and other components, and better integrate the ML experimental
work-�ow with traditional software, it is recommended to use a
communication middleware between components. Even more, the
middleware can be reused between training and serving, because
the impact from training on infrastructure should not be high. For
example, if the system uses a message queue in production, thee
number of messages exchanged for training will be small.

Reuse virtualisation and infrastructure scripts. Infrastructure-as-
code and virtualisation (e.g., Docker) should be adopted in all sys-
tems with ML components. Moreover, this code for infrastructure
and virtualisation can be reused between training and serving,
e.g., by holding states in con�guration �les.

Separate business logic from ML components. To distinguish er-
rors betweenML components and business logic, it is recommended
to separate their concerns and development. The separation can
be done by using independent modules/services for each concern.
Moreover, standardisation of interfaces and the use of one mid-
dleware facilitate interoperation between business logic and ML
components.

1https://www.snorkel.org/
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Standardise interfaces. As mentioned in standardise model inter-
faces, standardisation of interfaces should be adopted between all
components in a system.

Design independent modules/services for ML and data. ML com-
ponents are coupled (and dependent) to data components. To min-
imise the coupling between the two, it is recommended to design
independent modules or services for ML models and data (as also
recommended in the data category).

Relax coupling heuristics between ML and data. Since ML and
data components are highly coupled, there are use cases when
the coupling can not be reduced. Therefore, for ML components
it is recommended to relax coupling heuristics. Nonetheless, the
heuristics should not be relaxed for other (business) logic.

Use n-versioning. Ensembles of ML models are used to decrease
the risk of over-�tting, better approximate prediction uncertainty
or facilitate interpretability. Thinking of ensembles as n-versioning
helps to understand the role of each model, and its integration in
the system. Moreover, it helps to separate the voting logic from the
ML logic. An example is using an interpretable or rule based model
as back-up for a black-box model.

Design and monitor uncertainty measures. Besides the metrics
used as functional requirements (e.g., accuracy), it is recommended
to monitor the uncertainty of ML components because it can signal
degradation of models and silent failures.

Employ interpretable models. Interpretable models help to un-
derstand the decisions of ML components both by developers and
users. Therefore, they should be the �rst choice for all systems
with ML components. In case interpretable models can not satisfy
functional requirements, they should be developed as secondary
models in n-versioning.

Use human intervention. If possible, ML models should be as-
sessed by team members (e.g., developers, data scientists, etc.).

Use metric monitoring and alerts to detect failures. ML compo-
nents can fail silently, i.e., their predictions can be erroneous, in
spite of the fact that they are running. To detect silent failures,
it is recommended to use continuous monitoring of metrics, and
implement alert systems which can notify incidents (e.g., decrease
in accuracy, increase in uncertainty). When designing the alert
modules, it is important to consider that alerts may be interpreted
by team members that did not assisted the development. There-
fore, alerts should be comprehensive enough to be interpreted by
external actors.

Instrument the system to the fullest extent. Instrumentation is
key to detection of failures, distribution shifts, or, more generally,
malfunctions of ML components. Therefore, it is recommended to
dedicate attention to de�ne as many metric as possible, in order to
analyse ML components. Instrumentation also facilitates incident
management in production.

Design log modules to aggregate metrics. Log modules should be
designed to allow fast mining of data. Nonetheless, in preparation
for time constrained situations, such as incident management, log

modules should be designed to already aggregate metrics and save
high level conclusions. Aggregates are also helpful for audit reports.

Design log modules to visualise metrics. Besides metric aggrega-
tion, the design of visualisations modules to monitor ML compo-
nents is recommended.

Wrap components in APIs/modules/services. Using generic pack-
ages for ML can result in large amounts of support code that con-
nects ML components to other parts of the system. This glue code
is costly, because it makes systems dependent on packages ver-
sions. To combat glue code, black-box packages can be wrapped in
common APIs or independent modules/services.

Version con�guration �les. To reproduce previous ML experi-
ments, and collect historical data about successful experiments, it is
recommended to version con�guration �les among other artefacts,
such as training and testing data, or models.

Design the log system to support AutoML. Data supporting the
automation of ML development can be collected from logging or
versioning. Designing the log system to support AutoML consists
of designing modules for data storage and retrieval. An example is
the creation of data sinks to support AutoML.

Design the version system to support AutoML. Similar to designing
the logging system to support AutoML, the versioning system can
support data collection and retrieval for AutoML. For example, by
creating repositories dedicated to AutoML data.

Design model tests. Model testing are similar to unit tests, but for
ML models. Model tests verify if models work with the data used in
serving, and if their output satisfy prede�ned conditions. Besides
implementing the tests, it is recommended to encapsulate them
in independent modules, which can be orchestrated in di�erent
processes, if needed.

Design data tests. Data tests check the data satis�es prede�ned
conditions; such as format, missing �elds, distributions, etc. Similar
to model tests, data tests should be encapsulated in independent
modules, which can be reused in multiple pipelines. Moreover, it is
desired to reuse data tests between training and pipelines.

Use integration tests. Integration tests verify the integration of
ML components with other components in the system, and prevent
cascading errors. Therefore, they are recommended for all systems
with ML components.

Use CI/CD.. Automation in building, testing and deployment of
systems with ML components facilitates fault isolation, increases
reliability and team agility. Therefore, CI/CD is recommended for
all projects with ML components.

Use unit tests. Besides model and data tests, it is recommended to
write unit tests for all code; as in traditional software development.

Use data ownership for test modules. Consider individual data
splits owned by test modules. In this way, one can ensure that
test data is not mistakenly used for training. Moreover, test mod-
ules orchestrated in di�erent pipelines will rely on independent
data samples. However, it is recommended to ensure the data is
continuously refreshed.
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Use metrics and CI/CD for validation. In order to validate models
for production, it is recommended to design a metric suite, and
automate its veri�cation through CI/CD.

Use alerts for validation. In case a model is promoted/discarded
for production, it is recommended to announce it to the team
through an alert module.

Use human intervention for validation. In order to maintain hu-
man oversight, it is recommended that team members analyse mod-
els promoted to production.

Design for automatic continuous retraining. Maintenance an evo-
lution of ML components requires continuous retraining. In is rec-
ommended to design the system s.t. this process can be automated.
For example, by developing modules that can deploy infrastructure
and orchestrate data and training modules.

Use automatic rollback. If, due to changes in the input data or
undetected skew, a deployed model performs sub-optimal, it should
be rolled back to an earlier, better performing version. Designing
a process for automatic roll-back minimizes the time a deployed
model with sub-optimal performance is kept in production.

Use infrastructure-as-code. Setting up the infrastructure for ML
components (e.g., starting new machines, transferring the data) is a
tedious process. In order to increase the agility, it is recommended
to automate this task.

Adopt standard release processes. To avoid human errors and sub-
optimal models from being deployed, it is recommended to design
and adopt standard releases processes. Since ML teams are hetero-
geneous, some team members may be unaware of the processes
for model release or roll-back. Shared within the team, standard
processes empower members to act when faced with incidents.

Encapsulate ML components in identi�able modules/services. To
manage the dependencies and consumers of ML components, it is
recommended to encapsulate them in identi�able modules/services.
The unique identi�ers can be used to trace back consumers, and
should be used to log all interactions with ML components.

Use authentication and access control. In order to forbid access
to ML consumers, it is recommended to implement authentication
and access control policies. Similar policies should be implement
for the data used by ML components.

Log consumers of ML consumers. Unique identi�ers of ML com-
ponents can be used to trace back consumers, and should be used
to log for all interactions with ML components.

Design for batch processing for training and stream processing for
serving. To balance latency, throughput, and fault-tolerance, needed
for training and serving it is recommended to adopt a lambda archi-
tecture, i.e., use batch processing for training and stream processing
for serving.

Physically isolate the workloads. To scale training and serving
workloads, it is recommended to physically isolate them, i.e., deploy
on distinct physical hardware. This is automatically done when
using cloud services.

Use virtualisation. To abstract from the software suite needed
for ML, and increase reproducibility and agility, it is recommended
to use virtualisation (e.g., Docker).

Design for traceability and reproducibility. In a system with ML
components, traceability and reproducibility are inherent require-
ments which need to be satis�ed. Di�erent strategies can be applied,
within which two methods are common: logging pointers to ver-
sioned artefacts, and versioning of data and model related artefacts.

Log pointers to versioned artefacts. Tracing decisions back to the
input data and the model’s version can be di�cult. It is therefore rec-
ommended to log production predictions together with the model’s
version and input data.

Version con�gurations, models and data. To reproduce previous
ML experiments, one needs more than just the executable code.
Versioning the training and testing data, the �nal model, and all
con�guration �les is complementary to versioning the code.

Form multi-disciplinary teams. ML components require the in-
tegration of di�erent technology stacks responsible for infrastruc-
ture, data management, model training and serving. To tackle the
challenges at di�erent levels, it is recommended to form multi-
disciplinary teams consisting of members responsible for di�erent
levels of the stack.

De�ne processes for decision making. In many cases, decisions
have to be made under uncertainty and incomplete information. To
enhance the ability of a team to make the right decisions at the right
time, it is recommended to de�ne and enforce a standard process
across team members. ML adds more uncertainty to a system, and
increases the importance of standard processes for decision making.

Raise awareness of ML risks within the team. Even when used
with good intentions, ML can negatively impact on the society.
Therefore, it is recommended to inform team members working at
di�erent levels of the stack about ML risks.
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