
1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

A DEMOGRAPHICS SLR
See Figures 3, 4, 5.

Figure 3: Distribution of manually inspected and used arti-
cles grouped by source.

ACM DL

IEEE Xplore

ScienceDirect

Scopus
Google

GoogleScholar

Snowball

0

5

10

15

20

25

30 Inspected
Used

Source

Pe
rc

en
ta

ge
 o

f 
ar

ti
cl

es

Figure 4: Distribution of manually inspected and used arti-
cles grouped by publication year.

2016
2017

2018
2019

2020
0

5

10

15

20

25

30

35

40
Inspected
Used

Years

Pe
rc

en
ta

ge
 o

f 
ar

ti
cl

es

Figure 5: Distribution of manually inspected and used arti-
cles grouped by publication type.

Journals

Conferences

Workshops

Reports

Preprints

Web Articles

0

10

20

30

40
Inspected
Used

Publication type

Pe
rc

en
ta

ge
 o

f 
ar

ti
cl

es

13



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

B LIST OF ARTICLES SLR
See Table 6.

Source Title Used

ACM DL A framework for managing uncertainty in software architecture 0
ACM DL A Report on the First Workshop on Software Engineering for Arti�cial Intelligence (SE4AI 2020) 0
ACM DL Achieving guidance in applied machine learning through software engineering techniques 1
ACM DL Deep learning UI design patterns of mobile apps 0
ACM DL Designing the Software Systems of the Future 1
ACM DL Do you want to become an AI and machine learning software engineer? 0
ACM DL Does �xing bug increase robustness in deep learning? 0
ACM DL Emerging and Changing Tasks in the Development Process for Machine Learning Systems 1
ACM DL Hacking Machine Learning 0
ACM DL Intelligent Software Engineering: Synergy Between AI and Software Engineering 0
ACM DL Keeping intelligence under control 0
ACM DL Robustness testing of autonomy software 0
ACM DL Software Engineering for distributed autonomous real-time systems 0
ACM DL Software Engineering for Machine Learning: A Case Study 1
ACM DL Taxonomy of real faults in deep learning systems 0
ACM DL Teaching software engineering for AI-enabled systems 0
ACM DL Toward a holistic software systems engineering approach for dependable autonomous systems 1
ACM DL Towards classes of architectural dependability assurance for machine-learning-based systems 1
ACM DL Tutorial on Software Testing & Quality Assurance for Machine Learning Applications 0
ACM DL Self-organizing infrastructure for machine (deep) learning at scale 0
ACM DL Sensemaking Practices in the Everyday Work of AI/ML Software Engineering 1

IEEE Xplore A Bird’s Eye View on Requirements Engineering and Machine Learning 0
IEEE Xplore A detailed survey of Arti�cial Intelligence and Software Engineering: Emergent Issues 0
IEEE Xplore A Safe, Secure, and Predictable Software Architecture for Deep Learning in Safety-Critical Systems 0
IEEE Xplore A survey of software quality for machine learning applications 0
IEEE Xplore AI Safety Landscape From short-term speci�c system engineering to long-term arti�cial general intelligence 0
IEEE Xplore Analysis of Software Engineering for Agile Machine Learning Projects 0
IEEE Xplore Can AI close the design-code abstraction gap? 0
IEEE Xplore Deep learning development review 0
IEEE Xplore Designing Safety Critical Software Systems to Manage Inherent Uncertainty 1
IEEE Xplore How Do Engineers Perceive Di�culties in Engineering of Machine-Learning Systems? - Questionnaire Survey 1
IEEE Xplore How does Machine Learning Change Software Development Practices? 1
IEEE Xplore Improved Self-Management Architecture in Self-Adaptive System 0
IEEE Xplore What is AI software testing? And why? 0
IEEE Xplore Requirements engineering challenges in building AI-based complex systems 1
IEEE Xplore Security engineering for machine learning 1
IEEE Xplore Software engineering challenges of deep learning 1
IEEE Xplore Software Engineering for Machine-Learning Applications: The Road Ahead 0
IEEE Xplore Studying Software Engineering Patterns for Designing Machine Learning Systems 1
IEEE Xplore Testing and Quality Validation for AI Software–Perspectives, Issues, and Practices 0
IEEE Xplore Towards concept based software engineering for intelligent agents 0
IEEE Xplore Uncertain requirements, assurance and machine learning 1
IEEE Xplore Understanding Development Process of Machine Learning Systems: Challenges and Solutions 1

Science Direct Assessing the drivers of machine learning business value 0
Science Direct AI service system development using enterprise architecture modeling 0

Scopus Big Data Analytics in Building the Competitive Intelligence of Organizations 0
Scopus Complex, Intensive Systems and Software Intelligent 0

Google Scholar A test architecture for machine learning product 1
Google Scholar An Analysis of ISO 26262: Using Machine Learning Safely in Automotive Software 0
Google Scholar An overview of next-generation architectures for machine learning: Roadmap, opportunities and challenges in

the IoT era
0

14



1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Google Scholar SNaP ML: A hierarchical framework for machine learning 0
Google Scholar Software Architecture Design of the Real-Time Processes Monitoring Platform 1
Google Scholar Software Architecture in a Changing World 1
Google Scholar Solution Patterns for Machine Learning 0

Google A Taxonomy of Software Engineering Challenges for Machine Learning Systems: An Empirical Investigation 1
Google Continuous Delivery for Machine Learning 1
Google Demystifying Data Lake Architecture 1
Google Deploy, Connect and Execute Scienti�c Models 0
Google Ethics guidelines for trustworthy AI 1
Google Hidden technical debt in machine learning systems 1
Google The National Arti�cial Intelligence Research and Development Strategic Plan: 2019 Update 1
Google ML Reference Architecture 1
Google Machine Learning Architecture and Design Patterns 1
Google Method for Assessing the Applicability of AI Service Systems 0
Google Requirements for Trustworthy Arti�cial Intelligence – A Review 1
Google Software Engineering Practice in the Development of Deep Learning Applications 1

Snowball A Design Pattern for Machine Learning with Scala, Spray and Spark 1
Snowball AI Engineering: 11 Foundational Practices 1
Snowball Adoption and E�ects of Software Engineering Best Practices in Machine Learning 1
Snowball ClearTK 2.0: Design patterns for machine learning in UIMA 0
Snowball Continuous Training for Production ML in the TensorFlow Extended (TFX) Platform 1
Snowball Data Validation for Machine Learning 1
Snowball Daisy Architecture 1
Snowball Expanding AI’s impact with organisational learning 0
Snowball Machine learning at Facebook: Understanding inference at the edge 1
Snowball Machine Learning Software Engineering in Practice: An Industrial Case Study 1
Snowball Machine Learning System Architectural Pattern for Improving Operational Stability 1
Snowball Patterns (and Anti-Patterns) for Developing Machine Learning Systems 1
Snowball Rules of Machine Learning 1
Snowball Towards using probabilistic models to design software systems with inherent uncertainty 1
Snowball Scaling distributed machine learning with the parameter server 0
Snowball Scaling Machine Learning as a Service 1

Table 6: Manually inspected and used articles.

15



1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

C DATA EXTRACTION SLR
See Table 7.

Table 7: Data items extracted from each article.

ID Data Item Description RQ

1 Title The title of the article. Demographics
2 Year The publication year. Demographics
3 Venue The publication venue name. Demographics
4 Context Academic or Industry. Demographics
5 Source Retrieval source. Demographics
6 Research type Type of research – e.g., validation research, evaluation research, opinion article. Demographics.
7 Challenges Documents the challenges reported in (re-) designing software with ML compo-

nents.
RQ1

8 Tactics, Practices or Patterns Documents the tactics, practices or patterns reported to meet challenges in (re-)
designing software with ML components.

RQ2

9 Data type The data type used in ML. Data

16



1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

D SOLUTIONS EXTRACTED FROM THE SLR
See Table 8.

17



1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Table 8: List of SA challenges for ML and related solutions as extracted from the SLR.

Nr. Category Challenges Solutions References

1 Reqs. At design time the information available is insu�cient
to understand the customers or the projects.

Measure and document uncertainty sources. [10, 16,
29, 39, 40,
66]

2 Reqs. ML components lack functional requirements. Use metrics as functional requirements. Include under-
standability and explainability of the outputs.

[10, 16,
19, 29, 40,
66]

3 Reqs. ML projects have regulatory restrictions and may be
subject to audits.

Analyse regulatory constraints up-front. Adopt an AI
code of conduct. Design audit trails.

[23, 32,
47, 63]

4 Data Data preparation may result in a jungle of scrapes, joins,
and sampling steps, often with intermediate outputs.

Design separate modules/services for data collection
and data preparation.

[19, 38,
58]

5 Data Data quality is hard to test, and may have unexpected
consequences.

Design separate modules/services for data quality as-
sessment.

[19, 38,
43, 52, 75]

6 Design Separate concerns between training, testing, and serv-
ing, but reuse code between them.

Standardise model interfaces. [2, 72, 76]

7 Design Distinguish failures betweenML components and other
business logic.

Separate business logic from ML components. [53, 73]

8 Design ML components are highly coupled, and errors can have
cascading e�ects.

Design independent modules/services for ML and data.
Relax coupling heuristics between ML and data.

[27, 49,
66]

9 Design ML components bring inherent uncertainty to a system. Design and monitor uncertainty metrics. [3, 27, 49,
62, 64]

10 Design ML components can fail silently. These failures can be
hard to detect, isolate and solve.

Use metric monitoring and alerts to detect failures. [11, 64,
71]

11 Design ML components are intrinsically opaque, and deduc-
tive reasoning from the architecture artefacts, code or
metadata is not e�ective.

Instrument the system to the fullest extent. Design log
modules to aggregate/visualise metrics.

[27, 49,
57, 76]

12 Design Avoid unstructured components which link frame-
works or APIs (e.g., glue code).

Wrap components in APIs/modules/services. [58]

13 Design Automation and understanding of ML tasks is di�cult
(AutoML).

Version con�guration �les. Design the log and version-
ing systems to support AutoML data retrieval.

[38, 55,
63, 66, 72]

14 Testing ML testing goes beyond programming bugs to issues
that arise from model, data errors, or uncertainty.

Design model and data tests. Use CI/CD. [2, 4, 48,
54, 75]

15 Testing Validation of ML components for production is di�cult. Use metrics and CI/CD for validation. Use alerts, visu-
alisations.

[56]

16 Ops. ML components require continuous maintenance, re-
training and evolution.

Design for automatic continuous retraining. Use CI/CD.
Use automatic rollback.

[8, 39, 49,
56, 66, 68,
75]

17 Ops. Manage the dependencies and consumers of ML appli-
cations.

Use authentication and access control. Log consumers
of ML components.

[7, 22, 27,
58, 73]

18 Ops. Balance latency, throughput, and fault-tolerance,
needed for training and serving.

Design for batch processing (training) and stream pro-
cessing (serving), i.e., lambda architecture. Physically
isolate the workloads.

[15, 38,
45, 67, 72]

18



2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

E DATA INTERVIEWS
See Figures 6, 7, 8.

Figure 6: Distribution of data types used by interview partic-
ipants.

Images & Videos

Time Series

Tabular Data

Text
Simulations

Graphs

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 7: Distribution of architectural decision drivers from
interviews.

Scalability

H
ardw

are

D
ata

Interpretability

Perform
ance

Interoperability

Security

Privacy

G
eneralisation

0

5

10

15

20

25

P
e
r
c
e
n
t
a
g
e
 o

f 
a
n
s
w

e
r
s

Figure 8: Distribution of architectural decision drivers
grouped by data type.

Im
ages &

 Videos

Tim
e Serries

Tabular D
ata

Text
Sim

ulations

G
raphs

0

20

40

60

80

100 Generalization

Security

Interoperability

Performance

Privacy

Interpretability

Data

Hardware

Scalability

P
e
r
c
e
n
t
a
g
e
 o

f 
a
n
s
w

e
r
s

19



2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

F THEMES EXTRACTED FROM INTERVIEWS

Figure 9: Themes extracted for challenge 1.

Experience

Simulations

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 10: Themes extracted for challenge 2.

Metrics
Explainability

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 11: Themes extracted for challenge 4.

Separate concerns

and encapsulate

Authentication

Use Metadata

Test Data

Workflows

Separate arch.

views

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s
Figure 12: Themes extracted for challenge 5.

Separate concerns

and encapsulate

Visualizations

Workflows

Tooling

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

20



2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

Figure 13: Themes extracted for challenge 6.

Interfaces

Separate concerns

and encapsulate

CI/CD
Middleware

Virtualization

Standardized

model export

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 14: Themes extracted for challenge 7.

Separate concerns

and encapsulate

Interfaces

Middleware

Model is
business logic

Design patterns

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 15: Themes extracted for challenge 8.

Separate concerns

and encapsulate

Relax assumptions

Middleware

Versioning

Event-driven

Separate deployment

Microservices

Interfaces

Virtualisation

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s
Figure 16: Themes extracted for challenge 9.

H
um

an intervention

M
onitoring

n-versioning

Visualizations

Error detection

Interpretability

Testing

0

5

10

15

20

25

30

P
e
r
c
e
n
t
a
g
e
 o

f 
a
n
s
w

e
r
s

21



2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

Figure 17: Themes extracted for challenge 10.

H
um

an intervention

n-versioning

M
onitoring

Avoid ood

Alerts

Interpretability

0

5

10

15

20

25

P
e
r
c
e
n
t
a
g
e
 o

f 
a
n
s
w

e
r
s

Figure 18: Themes extracted for challenge 11.

Separate
logging

Visualizations

Alerts
Tooling

Selective
logging

Telemetry
monitoring

Aggregate
logging

Standardized

logging

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 19: Themes extracted for challenge 12.

Interfaces

Separate concerns

and encapsulate

CI/CD
Lambda arch.

Infrastructure-as-code

Virtualisation

Monitoring

Testing
Cont. arch.

Authentication

Middleware

Documentation

0

5

10

15

20

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s
Figure 20: Themes extracted for challenge 13.

Versioning

Separate concerns

and encapsulate

Configuration

management

Logging

Continuous
retraining

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

22



2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

Figure 21: Themes extracted for challenge 14.

CI/CD
Model testing

Unit testing

Alerts
Data testing

Manual testing

Monitoring

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 22: Themes extracted for challenge 15.

Visualizations

CI/CD
Alerts

Bug templates

Anomaly detection

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 23: Themes extracted for challenge 16.

CI/CD
Continuous

retraining

Infrastructure as code

Monitoring

Release plan

Alerts
Automated data prep.

Versioning

Automated roll-back

Parallel training

Lambda arch.

0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s
Figure 24: Themes extracted for challenge 17.

Logging

Authentication

TLS Incident management

0

10

20

30

40

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

23



2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

Figure 25: Themes extracted for challenge 18.

Virtualisation

Lambda arch.

Separate concerns

and encapsulate

CI/CD
Infrastructure-as-code

Monitoring

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

24



2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

G SOLUTIONS AFTER THE INTERVIEWS
See Table 9.

25



2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

Table 9: List of SA challenges and solutions after the interviews.

Nr. Category Challenges Solutions References

1 Reqs. At design time the information available is insu�cient
to understand the customers or the projects.

Run simulations to gather data. Use past experience.
Measure and document uncertainty sources.

[10, 16,
29, 39, 40,
66]

2 Reqs. ML components lack functional requirements. Use metrics as functional requirements. Include under-
standability and explainability of the outputs.

[10, 16,
19, 29, 40,
66]

3 Reqs. ML projects have regulatory restrictions and may be
subject to audits.

Analyse regulatory constraints up-front. Adopt an AI
code of conduct. Design audit trails.

[23, 32,
47, 63]

4 Data Data preparation may result in a jungle of scrapes, joins,
and sampling steps, often with intermediate outputs.

Design separate modules/services for data collection
and data preparation. Integrate external tools.

[19, 38,
58]

5 Data Data quality is hard to test, and may have unexpected
consequences.

Design separate modules/services for data quality as-
sessment. Integrate external tools.

[19, 38,
43, 52, 75]

6 Design Separate concerns between training, testing, and serv-
ing, but reuse code between them.

Standardise model interfaces. Use one middleware.
Reuse virtualisation, infrastructure and test scripts.

[2, 72, 76]

7 Design Distinguish failures betweenML components and other
business logic.

Separate business logic fromML components. Standard-
ise interfaces and use one middleware between them.

[53, 73]

8 Design ML components are highly coupled, and errors can have
cascading e�ects.

Design independent modules/services for ML and data.
Standardise interfaces and use one middleware. Relax
coupling heuristics between ML and data.

[27, 49,
66]

9 Design ML components bring inherent uncertainty to a system. Use n-versioning. Design and monitor uncertainty met-
rics. Employ interpretable models/human intervention.
Use self adaptation.

[3, 27, 49,
62, 64]

10 Design ML components can fail silently. These failures can be
hard to detect, isolate and solve.

Use metric monitoring and alerts to detect failures. Use
n-versioning. Employ interpretable models. Detect out
of distrribution data.

[11, 64,
71]

11 Design ML components are intrinsically opaque, and deduc-
tive reasoning from the architecture artefacts, code or
metadata is not e�ective.

Instrument the system to the fullest extent. Use n-
versioning. Employ interpretable models. Design log
modules to aggregate/visualise metrics.

[27, 49,
57, 76]

12 Design Avoid unstructured components which link frame-
works or APIs (e.g., glue code).

Wrap components in APIs/modules/services. Use stan-
dard interfaces and one middleware. Use virtualisation.

[58]

13 Design Automation and understanding of ML tasks is di�cult
(AutoML).

Version con�guration �les. Design the log and version-
ing systems to support AutoML data retrieval.

[38, 55,
63, 66, 72]

14 Testing ML testing goes beyond programming bugs to issues
that arise from model, data errors, or uncertainty.

Designmodel and data tests. Use CI/CD. Use integration
and unit tests. Use data ownership for test modules. Use
manual inspection.

[2, 4, 48,
54, 75]

15 Testing Validation of ML components for production is di�cult. Use metrics and CI/CD for validation. Use alerts, visual-
isations, human intervention. Design release processes.

[56]

16 Ops. ML components require continuous maintenance, re-
training and evolution.

Design for automatic continuous retraining. Use CI/CD.
Use automatic rollback. Use infrastructure-as-code.
Adopt standard release processes.

[8, 39, 49,
56, 66, 68,
75]

17 Ops. Manage the dependencies and consumers of ML appli-
cations.

Encapsulate ML components in identi�able mod-
ules/services. Use authentication and access control.
Log consumers of ML components.

[7, 22, 27,
58, 73]

18 Ops. Balance latency, throughput, and fault-tolerance,
needed for training and serving.

Design for batch processing (training) and stream pro-
cessing (serving), i.e., lambda architecture. Physically
isolate the workloads. Use virtualisation.

[15, 38,
45, 67, 72]

19 Ops. Trace back decisions to models, data and reproduce
past results.

Design for traceability and reproducibility; log pointers
to versioned artefacts, version con�gurations, models
and data.

P10

20 Org. ML applications use heterogeneous technology stacks
which require diverse backgrounds and skills.

Form multi-disciplinary teams. Adopt an AI code of
conduct. De�ne processes for decision-making. Raise
awareness about ML risks within the team.

P1

26



3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

H SURVEY DEMOGRAPHICS

Figure 26: Organisation type for survey participants.

 I work at
 a tech company

 (e.g. a social

 media platform)

 I work at
 a non-tech company

 (e.g. a bank)

 I work at
 a governmental organisation

 I work at
 a university or

 non-commercial research lab

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 27: Experience of survey participants.

 3-5 years of experience

 1-2 years of experience

 6-9 years of experience

 I just started

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 28: Team size for survey participants.

 6 to 9 members

 10 to 15 members

 3 to 5 members

 0-2 members

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 29: Data types used by survey participants.

 Tabular data

 Time series

 Images or Videos

 Text
 Audio

 Graphs

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

27



3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

Figure 30: Deployment interval for survey participants.

 O
nce every 3-4 w

eeks

 O
nce every 1-2 w

eeks

 O
nce per w

eek

 O
nce at intervals higher

 than 4 w
eeks

0

10

20

30

40

50

P
e
r
c
e
n
t
a
g
e
 o

f 
a
n
s
w

e
r
s

Figure 31: Regions for survey participants.

 Europe

 North America

 Asia

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

28



3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

I SOLUTIONS FROM SURVEY
See Figure 32 - 51.

Figure 32: Survey solutions to practice 1.

 We run simulations and

 experiments before architecture design

 We use past experience

 from ML projects

 We measure sources of

 uncertainty (e.g. uncertainty rega

 the data set size)

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 33: Survey solutions to practice 2.

 We use metrics as functional

 requirements

 We use interpretability and explainability

 of the outputs to validate

 functional requirements

 It is not important because

 ML is the only solution

 to our problem

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 34: Survey solutions to practice 3.

 W
e analyse regulatory constraints upfront and

 adapt the architecture to support them

 O
ur application does not have to

 com
ply w

ith any regulation

 W
e adhere to an AI code

 of conduct

 W
e provide audit trails

 W
e do not have a m

itigati

 strategy for regulatory M
L c

0

5

10

15

20

25

30

P
e
r
c
e
n
t
a
g
e
 o

f 
a
n
s
w

e
r
s

Figure 35: Survey solutions to practice 4.

 We design separate modules/services

 for data collection and

 preparation

 We use an external

 tool

 Data collection and preparation

 are one module/service

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

29



3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

Figure 36: Survey solutions to practice 5.

 We develop separate modules/services

 for data quality assessment

 We use an external

 tool

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 37: Survey solutions to practice 6.

 Yes, we reuse the models interfaces

 Yes, we reuse the communication middleware

 Yes, we reuse virtualisation and infrastructure

 scripts

 Yes, we reuse multiple modules/services

 Yes, we reuse test code

 No, for serving we use code

 not used in training

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 38: Survey solutions to practice 7.

 W
e separate business logic

 from
 M

L com
ponents

 W
e use standard interfaces

 W
e use one com

m
unication

 m
iddlew

are

 O
ur m

odels do not

 interact w
ith business logic

0

10

20

30

40

50

P
e
r
c
e
n
t
a
g
e
 o

f 
a
n
s
w

e
r
s

Figure 39: Survey solutions to practice 8.

 We develop modules/services which

 can be integrated in

 multiple pipelines

 We use standardised interfaces

 We use one communication

 middleware

 We relax our design

 and allow component coupling

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

30



3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

Figure 40: Survey solutions to practice 9.

 We use multiple versions of

 the software (e.g., ensembles of

 models, n-versioning)

 We use uncertainty metrics and

 monitor the metric evolution

 We use interpretable models

 We use human intervention

 We use self-adaptation

 We do not take into

 account uncertainty of ML com

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 41: Survey solutions to practice 10.

 W
e use instrum

entation, m
onitoring or alerts

 W
e use m

ultiple versions of the softw
are

 (e.g., ensem
bles of m

odels, n-versioning)

 W
e use interpretable m

odels

 W
e detect out of distribution data

 O
ther

0

5

10

15

20

25

30

35

P
e
r
c
e
n
t
a
g
e
 o

f 
a
n
s
w

e
r
s

Figure 42: Survey solutions to practice 11.

 We use instrumentation, monitoring or alerts

 We use multiple versions of the software

 (e.g., ensembles of modes, n-versioning)

 We use interpretable models

 We develop visualisation modu

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 43: Survey solutions to practice 12.

 We use virtualisation

 We use one communication

 middleware

 We use standard interfaces

 We group unstructured compo

 in modules/services

0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

31



3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

Figure 44: Survey solutions to practice 13.

 We do not automate

 hyper-parameters, model creation or

 selection

 We version all configuration

 files

 We develop the logging

 module to support AutoML

 We develop the versioning

 system to support AutoML

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 45: Survey solutions to practice 14.

 We use model testing

 We use data tests

 We automate tests

 We use unit testing

 We use integration testing

 We use manual inspection

0

5

10

15

20

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 46: Survey solutions to practice 15.

 We use instrumentation, monitoring or alerts

 We use automatic validation through CI/CD

 We develop visualisation modules

 We use human intervention

 We define comprehensive release plans

 We develop anomaly detection mod

 We do not have a strategy

 for it

0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 47: Survey solutions to practice 16.

 We design for automatic,

 continuous retraining

 We use CI/CD

 We use automatic roll-back

 We use infrastructure-as-code

 We standardise release plans

 and procedures

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

32



3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

Figure 48: Survey solutions to practice 17.

 We encapsulate all consumers in identifiable

 modules/services

 We use authentication and access control

 mechanisms to trace back consumers

 We use the logging module to

 trace back consumers

 We do not have a strategy

 for it

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 49: Survey solutions to practice 18.

 We use batch processing

 for training and stream

 processing for serving

 We physically isolate training

 and serving

 We use virtualisation (e.g.,

 Docker)

 We do not have

 a strategy for it

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 50: Survey solutions to practice 19.

 We design for traceability and reproducibility

 We log pointers to versioned artefacts

 We version configuration files

 We version models and data

 We do not have a strategy

 for it

0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 51: Survey solutions to practice 20.

 We form multi-disciplinary teams inside the

 organisation

 We adopt a code of conduct

 We define processes for decision-making

 We raise awareness about ML risks

 within the team

 We do not have a strategy

 for it

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

33



3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

Figure 52: Survey solutions to instrumentation.

 We develop separate monitoring

 and logging modules/services

 We separate logging between

 training and serving

 We develop log aggregates

 and visualisation modules

 We use external tools

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

Figure 53: Survey solutions to interview challenges, grouped
by team size.

10 to 15 members 6 to 9 members
0

20

40

60

80

100

We do not have a strategy for it
We adopt a code of conduct
We raise awareness about ML risks within the team
We define processes for decision-making
We form multi-disciplinary teams inside the organisatio

Pe
rc

en
ta

ge
 o

f 
an

sw
er

s

34



3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

J THEME DESCRIPTION
Run simulations to gather data. When designing systems with

ML components, the information regarding data, the suitable ML
techniques, or the cost of infrastructure is incomplete. Moreover,
users have unrealistic expectations regarding the quality that ML
can provide, in relation to the resources available. To get a better
understanding of the project and detect issues as early as possible,
it is recommended to run simulations before de�ning the SA. The
simulations may include data �ows, running ML models on open
source data that resembles the project task, deploying and scaling
mock models, etc.

Use past experience. Expert opinion and past experience can be
used in designing systems with ML components. Nonetheless, past
experience should be paired with context information, as distinct
ML techniques have di�erent inherent requirements.

Measure and document uncertainty sources. To better evaluate
the resources available, and create accurate expectations regarding
the quality of ML components, it is recommended to measure and
document sources of uncertainty. For example, uncertainty regard-
ing data set size, data quality, regulatory constraints, number of
users, etc. In particular, the data set size and quality may lead to
bottlenecks early in the pipeline.

Use metrics as functional requirements. Compared to traditional
software, ML components lack clear functional requirements. To
overcome this drawback, it is recommended to use concrete, mea-
surable, metrics as functional requirements. Examples of metrics
are, accuracy, F1-score, but also metrics for trustworthy ML such
as robustness, bias, etc.

Include understandability and explainability of the outputs. When
translating requirements to measurable metrics, it is recommended
to include metrics for understandability and/or explainability of
the output of ML components. These metrics help to analyse and
understand the data and the ML components. Moreover, they help
shape future decisions such as choosing ML techniques suitable for
the task, fall-back mechanisms, n-versioning, etc.

Analyse regulatory constraints up-front. Although ML/AI speci�c
regulatory constraints are, at the moment, in draft phase, their
impact on systems with ML component is expected to grow in
the near future. By analysing the regulatory constraints upfront,
architects can prepare the system for compliance and audits. For
example, regulatory constraints may enforce privacy requirements,
which will translate to SA decisions for using privacy preserving
ML techniques, privacy data management methods, etc.

Adopt an AI code of conduct. AI code of conducts help shape
both a system and the organisation. For example, a code of conduct
can stipulate the responsible use of ML/AI, which will translate to
SA decisions for using interpretable models. Organisation wise, AI
code of conducts will guide the decision processes.

Design audit trails. Audit trails help to analyse and understand a
system, even without context knowledge. Since ML components
are intrinsically opaque, it is recommended to think of audit traces
when de�ning the SA. This process will help to de�ne separate

models to aggregate logs, provide visualisations, or automate re-
ports and audit traces. Moreover, it helps third parties to assess
compliance to regulatory constraints.

Design separate modules/services for data collection and data
preparation. Data collection and preparation are experimental pro-
cesses, which may result in a jungle of scrapes, joins and sampling
steps. Therefore, the modularity and reuse of data modules is dimin-
ished. In order to avoid high coupling and facilitate code reuse, it is
recommended to separate data collection and preparation into sep-
arate modules, which can be imported/deployed and orchestrated
independently.

Integrate external tools for data collection and preparation. Multi-
ple tools already provide data collection and preparation capabil-
ities (e.g., Snorkel1). In case the project does not have tight data
management constraints (e.g., privacy), architects can choose to
integrate external tools. When choosing the tools for these task,
architects must ensure they can be integrated with the system, and
orchestrated in di�erent services.

Design separate modules/services for data quality assessment. Data
quality assessment consists of testing the data for missing data
values, distribution skews, drifts, etc. In order to avoid coupling
between data components, it is recommended to separate data qual-
ity assessment in individual modules/services. The modules should
be independently imported/deployed and integrated in multiple
pipelines, ensuring modularity and reusability.

Standardise model interfaces. To facilitate interoperability and
reusability between training and serving, it is recommended to
package ML models in standard interfaces. Choosing an interface
type is project speci�c, and can include REST APIs, gRPCs, etc.
Nonetheless, the models’ interfaces should be the same as the in-
terfaces for other components in the system.

Use one middleware. To enhance interoperability between ML
and other components, and better integrate the ML experimental
work-�ow with traditional software, it is recommended to use a
communication middleware between components. Even more, the
middleware can be reused between training and serving, because
the impact from training on infrastructure should not be high. For
example, if the system uses a message queue in production, thee
number of messages exchanged for training will be small.

Reuse virtualisation and infrastructure scripts. Infrastructure-as-
code and virtualisation (e.g., Docker) should be adopted in all sys-
tems with ML components. Moreover, this code for infrastructure
and virtualisation can be reused between training and serving,
e.g., by holding states in con�guration �les.

Separate business logic from ML components. To distinguish er-
rors betweenML components and business logic, it is recommended
to separate their concerns and development. The separation can
be done by using independent modules/services for each concern.
Moreover, standardisation of interfaces and the use of one mid-
dleware facilitate interoperation between business logic and ML
components.

1https://www.snorkel.org/

35



4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Anon.

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

Standardise interfaces. As mentioned in standardise model inter-
faces, standardisation of interfaces should be adopted between all
components in a system.

Design independent modules/services for ML and data. ML com-
ponents are coupled (and dependent) to data components. To min-
imise the coupling between the two, it is recommended to design
independent modules or services for ML models and data (as also
recommended in the data category).

Relax coupling heuristics between ML and data. Since ML and
data components are highly coupled, there are use cases when
the coupling can not be reduced. Therefore, for ML components
it is recommended to relax coupling heuristics. Nonetheless, the
heuristics should not be relaxed for other (business) logic.

Use n-versioning. Ensembles of ML models are used to decrease
the risk of over-�tting, better approximate prediction uncertainty
or facilitate interpretability. Thinking of ensembles as n-versioning
helps to understand the role of each model, and its integration in
the system. Moreover, it helps to separate the voting logic from the
ML logic. An example is using an interpretable or rule based model
as back-up for a black-box model.

Design and monitor uncertainty measures. Besides the metrics
used as functional requirements (e.g., accuracy), it is recommended
to monitor the uncertainty of ML components because it can signal
degradation of models and silent failures.

Employ interpretable models. Interpretable models help to un-
derstand the decisions of ML components both by developers and
users. Therefore, they should be the �rst choice for all systems
with ML components. In case interpretable models can not satisfy
functional requirements, they should be developed as secondary
models in n-versioning.

Use human intervention. If possible, ML models should be as-
sessed by team members (e.g., developers, data scientists, etc.).

Use metric monitoring and alerts to detect failures. ML compo-
nents can fail silently, i.e., their predictions can be erroneous, in
spite of the fact that they are running. To detect silent failures,
it is recommended to use continuous monitoring of metrics, and
implement alert systems which can notify incidents (e.g., decrease
in accuracy, increase in uncertainty). When designing the alert
modules, it is important to consider that alerts may be interpreted
by team members that did not assisted the development. There-
fore, alerts should be comprehensive enough to be interpreted by
external actors.

Instrument the system to the fullest extent. Instrumentation is
key to detection of failures, distribution shifts, or, more generally,
malfunctions of ML components. Therefore, it is recommended to
dedicate attention to de�ne as many metric as possible, in order to
analyse ML components. Instrumentation also facilitates incident
management in production.

Design log modules to aggregate metrics. Log modules should be
designed to allow fast mining of data. Nonetheless, in preparation
for time constrained situations, such as incident management, log

modules should be designed to already aggregate metrics and save
high level conclusions. Aggregates are also helpful for audit reports.

Design log modules to visualise metrics. Besides metric aggrega-
tion, the design of visualisations modules to monitor ML compo-
nents is recommended.

Wrap components in APIs/modules/services. Using generic pack-
ages for ML can result in large amounts of support code that con-
nects ML components to other parts of the system. This glue code
is costly, because it makes systems dependent on packages ver-
sions. To combat glue code, black-box packages can be wrapped in
common APIs or independent modules/services.

Version con�guration �les. To reproduce previous ML experi-
ments, and collect historical data about successful experiments, it is
recommended to version con�guration �les among other artefacts,
such as training and testing data, or models.

Design the log system to support AutoML. Data supporting the
automation of ML development can be collected from logging or
versioning. Designing the log system to support AutoML consists
of designing modules for data storage and retrieval. An example is
the creation of data sinks to support AutoML.

Design the version system to support AutoML. Similar to designing
the logging system to support AutoML, the versioning system can
support data collection and retrieval for AutoML. For example, by
creating repositories dedicated to AutoML data.

Design model tests. Model testing are similar to unit tests, but for
ML models. Model tests verify if models work with the data used in
serving, and if their output satisfy prede�ned conditions. Besides
implementing the tests, it is recommended to encapsulate them
in independent modules, which can be orchestrated in di�erent
processes, if needed.

Design data tests. Data tests check the data satis�es prede�ned
conditions; such as format, missing �elds, distributions, etc. Similar
to model tests, data tests should be encapsulated in independent
modules, which can be reused in multiple pipelines. Moreover, it is
desired to reuse data tests between training and pipelines.

Use integration tests. Integration tests verify the integration of
ML components with other components in the system, and prevent
cascading errors. Therefore, they are recommended for all systems
with ML components.

Use CI/CD.. Automation in building, testing and deployment of
systems with ML components facilitates fault isolation, increases
reliability and team agility. Therefore, CI/CD is recommended for
all projects with ML components.

Use unit tests. Besides model and data tests, it is recommended to
write unit tests for all code; as in traditional software development.

Use data ownership for test modules. Consider individual data
splits owned by test modules. In this way, one can ensure that
test data is not mistakenly used for training. Moreover, test mod-
ules orchestrated in di�erent pipelines will rely on independent
data samples. However, it is recommended to ensure the data is
continuously refreshed.

36



4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

An Empirical Study of So�ware Architecture for Machine Learning ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

Use metrics and CI/CD for validation. In order to validate models
for production, it is recommended to design a metric suite, and
automate its veri�cation through CI/CD.

Use alerts for validation. In case a model is promoted/discarded
for production, it is recommended to announce it to the team
through an alert module.

Use human intervention for validation. In order to maintain hu-
man oversight, it is recommended that team members analyse mod-
els promoted to production.

Design for automatic continuous retraining. Maintenance an evo-
lution of ML components requires continuous retraining. In is rec-
ommended to design the system s.t. this process can be automated.
For example, by developing modules that can deploy infrastructure
and orchestrate data and training modules.

Use automatic rollback. If, due to changes in the input data or
undetected skew, a deployed model performs sub-optimal, it should
be rolled back to an earlier, better performing version. Designing
a process for automatic roll-back minimizes the time a deployed
model with sub-optimal performance is kept in production.

Use infrastructure-as-code. Setting up the infrastructure for ML
components (e.g., starting new machines, transferring the data) is a
tedious process. In order to increase the agility, it is recommended
to automate this task.

Adopt standard release processes. To avoid human errors and sub-
optimal models from being deployed, it is recommended to design
and adopt standard releases processes. Since ML teams are hetero-
geneous, some team members may be unaware of the processes
for model release or roll-back. Shared within the team, standard
processes empower members to act when faced with incidents.

Encapsulate ML components in identi�able modules/services. To
manage the dependencies and consumers of ML components, it is
recommended to encapsulate them in identi�able modules/services.
The unique identi�ers can be used to trace back consumers, and
should be used to log all interactions with ML components.

Use authentication and access control. In order to forbid access
to ML consumers, it is recommended to implement authentication
and access control policies. Similar policies should be implement
for the data used by ML components.

Log consumers of ML consumers. Unique identi�ers of ML com-
ponents can be used to trace back consumers, and should be used
to log for all interactions with ML components.

Design for batch processing for training and stream processing for
serving. To balance latency, throughput, and fault-tolerance, needed
for training and serving it is recommended to adopt a lambda archi-
tecture, i.e., use batch processing for training and stream processing
for serving.

Physically isolate the workloads. To scale training and serving
workloads, it is recommended to physically isolate them, i.e., deploy
on distinct physical hardware. This is automatically done when
using cloud services.

Use virtualisation. To abstract from the software suite needed
for ML, and increase reproducibility and agility, it is recommended
to use virtualisation (e.g., Docker).

Design for traceability and reproducibility. In a system with ML
components, traceability and reproducibility are inherent require-
ments which need to be satis�ed. Di�erent strategies can be applied,
within which two methods are common: logging pointers to ver-
sioned artefacts, and versioning of data and model related artefacts.

Log pointers to versioned artefacts. Tracing decisions back to the
input data and the model’s version can be di�cult. It is therefore rec-
ommended to log production predictions together with the model’s
version and input data.

Version con�gurations, models and data. To reproduce previous
ML experiments, one needs more than just the executable code.
Versioning the training and testing data, the �nal model, and all
con�guration �les is complementary to versioning the code.

Form multi-disciplinary teams. ML components require the in-
tegration of di�erent technology stacks responsible for infrastruc-
ture, data management, model training and serving. To tackle the
challenges at di�erent levels, it is recommended to form multi-
disciplinary teams consisting of members responsible for di�erent
levels of the stack.

De�ne processes for decision making. In many cases, decisions
have to be made under uncertainty and incomplete information. To
enhance the ability of a team to make the right decisions at the right
time, it is recommended to de�ne and enforce a standard process
across team members. ML adds more uncertainty to a system, and
increases the importance of standard processes for decision making.

Raise awareness of ML risks within the team. Even when used
with good intentions, ML can negatively impact on the society.
Therefore, it is recommended to inform team members working at
di�erent levels of the stack about ML risks.

37


