Video/Audio Open Access

Haiku CS20.5 - Weakened magnetic braking supported by asteroseismic rotation

Hall, O. J.; Davies, G. R.; van Saders, J.; Nielsen, M. B.; Lund, M. N.; Chaplin W. J.; Garcia, R. A.; Amard, L.; Breimann, A. A.; Khan, S.; See, V.; Tayar, J.

Studies using asteroseismic ages and rotation rates from star-spot rotation have indicated that standard age-rotation relations may break down roughly half-way through the main sequence lifetime, a phenomenon referred to as weakened magnetic braking. While rotation rates from spots can be difficult to determine for older, less active stars, rotational splitting of asteroseismic oscillation frequencies can provide rotation rates for both active and quiescent stars, and so can confirm whether this effect really takes place on the main sequence. In this talk, I’ll show how we obtained asteroseismic rotation rates of 91 main sequence stars showing high signal-to-noise modes of oscillation. Using these new rotation rates, along with effective temperatures, metallicities and seismic masses and ages, we built a hierarchical Bayesian mixture model that showed that our new ensemble more closely agreed with weakened magnetic braking, over a standard rotational evolution scenario.

Files (22.2 MB)
Name Size
HallO_haiku.mp4
md5:92c1c5a967edcd6e9ef3a0d7117b44bc
22.2 MB Download
15
6
views
downloads
All versions This version
Views 1515
Downloads 66
Data volume 133.0 MB133.0 MB
Unique views 1515
Unique downloads 66

Share

Cite as