

PolicyCloud has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 870675.

CLOUD FOR DATA-DRIVEN POLICY MANAGEMENT

Project Number: 870675 Start Date of Project: 01/01/2020 Duration: 36 months

D3.2 CLOUD INFRASTRUCTURE INCENTIVES

MANAGEMENT AND DATA GOVERNANCE SOFTWARE

PROTOTYPE 1

Dissemination Level PU

Due Date of Deliverable 31/10/2020, Month 10

Actual Submission Date 30/11/2020

Work Package WP3 Cloud Infrastructures Utilization & Data

Governance

Task T3.1, T3.3, T3.4, T3.6

Type Demonstrator

Approval Status Final

Version V1.0

Number of Pages p.1 – p.38

Abstract: This document is an accompanying report providing information about the demonstrator of the
first version of the Cloud Infrastructure, Incentives Management and Data Governance software prototype.
It describes the cloud gateways and APIs, the cloud provisioning mechanisms, the implemented version of
the algorithms as well as the data governance tools according to the D3.1 specifications.
The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made
of the information contained therein. The information in this document is provided “as is” without guarantee or warranty of any kind,
express or implied, including but not limited to the fitness of the information for a particular purpose. The user thereof uses the information

at his/ her sole risk and liability. This deliverable is licensed under a Creative Commons Attribution 4.0 International License.

 D3.2 – v.1.0

www.policycloud.eu

2

Versioning and Contribution History

Version Date Reason Author

0.1 09/10/2020 TOC and assignments released Giannis Ledakis,
Konstantinos Theodosiou

0.2 23/10/2020 EGI contribution for section 2 Giuseppe La Rocca

0.3 06/11/2020 ATOS contribution for section 4 Maria Angeles Sanguino,
Jorge Montero, Ana Luiza
Pontual, Miquel Milà,
Tomas Pariente and Ricard
Munné

0.4 10/11/2020 UBI contribution for section 5, first merged
version

Giannis Ledakis,
Konstantinos Oikonomou

0.5 12/11/2020 Updates on section 2 Giuseppe La Rocca

0.6 13/11/2020 UPRC contribution for section 3 Ilias Maglogiannis, Thanos
Kiourtis, Argyro
Mavrogiorgou, George
Manias

0.7 17/11/2020 All content in place, document template
updated, ready for review

Giannis Ledakis,
Konstantinos Oikonomou

0.8 22/11/2020 Internal Review by UPRC Thanos Kiourtis, Argyro
Mavrogiorgou

0.9 23/11/2020 Changes addressed after Internal Review Giannis Ledakis,
Konstantinos Oikonomou

0.10 25/11/2020 Comments for Section 4 addressed by ATOS Maria Angeles Sanguino

0.11 27/11/2020 Comments for Section 2 addressed by EGI Giuseppe La Rocca

0.12 27/11/2020 Final Version, Ready for QA check and
submission

Giannis Ledakis,
Konstantinos Oikonomou

0.13 28/11/2020 Quality Check Argyro Mavrogiorgou

1.0 30/11/2020 Final version ready for submission Giannis Ledakis

Author List

Organisation Name

ATOS Maria Angeles Sanguino, Jorge Montero, Ana Luiza
Pontual, Miquel Milà, Tomas Pariente, Ricard
Munné

EGI Giuseppe La Rocca

UBITECH Giannis Ledakis, Konstantinos Theodosiou,

Konstantinos Oikonomou

UPRC Ilias Maglogiannis, Thanos Kiourtis, Argyro
Mavrogiorgou, George Manias, Fotis Karagiannis

 D3.2 – v.1.0

www.policycloud.eu

3

Abbreviations and Acronyms

Abbreviation/Acronym Definition
ABAC Attribute Based Access Control
API Application Programming Interface
CSV Comma Separated Values
EC European Commission
EOSC European Open Science Cloud
FTP File transfer Protocol
GTD Global Terrorism Database
HPC High Performance Computing
OID OpenId Connect
OLA Operational Level Agreement
ORM Object Relational Mapping
PAP Policy Administration Point
PDP Policy Decision Point
SLA Service Level Agreement
SQL Structured Query Language
TRL Technology Readiness Level
UI User Interface
XACML eXtensible Access Control Markup Language

 D3.2 – v.1.0

www.policycloud.eu

4

Contents

Versioning and Contribution History... 2

Author List ... 2

Abbreviations and Acronyms .. 3

Executive Summary ... 6

1 Introduction .. 7

1.1 Structure of the document .. 7

2 Cloud Provisioning of the PolicyCLOUD Infrastructure ... 8

2.1 The INDIGO-DataCloud PaaS Orchestrator .. 9

2.1.1 Main Features of the INDIGO-DataCloud PaaS Orchestrator .. 10

2.2 Baseline technologies and tools ... 11

2.3 Source Code .. 12

2.4 Deployment Status... 12

3 Cloud Gateways & APIs for Efficient Data Utilization .. 13

3.1 Prototype Overview .. 13

3.2 Main components of the prototype .. 13

3.2.1 Global Terrorism Database component (GTD Component) .. 13

3.2.2 Twitter Connector Component ... 14

3.3 Interfaces ... 15

3.3.1 GTD component Application Programming Interface .. 15

3.3.2 GTD component Command Line Interface .. 16

3.3.3 Twitter Connector component Application Programming Interface .. 16

3.4 Baseline technologies and tools ... 17

3.4.1 GTD component ... 17

3.4.2 Twitter Connector component ... 17

3.5 Source code ... 17

3.5.1 GTD component Code Overview and Availability .. 17

3.5.2 Twitter Connector Code Overview and Availability .. 19

3.6 Deployment Status... 20

4 Incentives Management .. 21

4.1 Main Capabilities .. 21

4.1.1 Incentives Identification .. 21

4.1.2 Incentives Management ... 21

4.2 Next Steps .. 22

5 Data Governance Model and Privacy Enforcement mechanism ... 23

 D3.2 – v.1.0

www.policycloud.eu

5

5.1 Prototype overview ... 23

5.2 Main components of the prototype .. 23

5.2.1 ABAC Server .. 23

5.2.2 KeyCloak ... 24

5.2.3 ABAC Client Filter ... 28

5.2.4 Test Web Client .. 29

5.3 Baseline technologies and tools ... 31

5.3.1 Balana ... 31

5.3.2 Keycloak .. 34

5.4 Deployment Status... 35

6 Conclusion ... 36

7 References ... 37

List of Tables
Table 1 - Resources included in the EGI Service Level Agreement .. 9
Table 2 - Incentives per Use Case ... 21

List of Figures
Figure 1 - Architecture of the INDIGO-DataCloud PaaS Orchestrator .. 10
Figure 2 - Architecture of the orchestrator within the PaaS layer... 11
Figure 3 - Architecture: Gateway’s GTD Sub-Component .. 14
Figure 4 - Architecture: Gateway’s Twitter Connector Sub-Component .. 14
Figure 5 - GTD’s Swagger OpenAPI Interface .. 15
Figure 6 - GTD’s Command Line Interface .. 16
Figure 7 - Twitter Connector Swagger OpenAPI Interface .. 17
Figure 8 - docker-compose.yaml file ... 24
Figure 9 - Keycloak Realm creation ... 25
Figure 10 - Keycloak Client Creation ... 25
Figure 11 - Keycloak Realm Roles .. 26
Figure 12 - Keycloak Users .. 26
Figure 13 - Initial Role Mappings ... 26
Figure 14 – Admin Role Grant .. 27
Figure 15 - Custom User Attribute ... 27
Figure 16 - Client Attribute Mapper .. 28
Figure 17 - Intercept Login .. 30
Figure 18 - Successful Attributes Retrieval .. 30
Figure 19 - Balana PDP .. 31
Figure 20 - Carbon Policy Filter .. 32
Figure 21 - Carbon Attribute Finder.. 33
Figure 22 - OIDC Signalling.. 34

 D3.2 – v.1.0

www.policycloud.eu

6

Executive Summary

The first version of the Cloud Infrastructure, Incentives Management and Data Governance software prototype

includes the cloud gateways and APIs, the cloud provisioning mechanisms, the implemented version of the

algorithms as well as the data governance tools according to the D3.1 [1] specifications. The prototype’s cloud

infrastructure will be supported by RECAS-BARI and will be utilized by EGI through cloud gateways. These

gateways allow the prototype to gather data from heterogenous data sources, such as from twitter and the global

terrorism database.

This first version of the prototype also includes an ABAC based access control mechanism suitable for

PolicyCLOUD. This is broken down to 3 key components that can be combined, along with a test client, in order to

demonstrate the access control capabilities to the use cases and to proceed with the definition of an accurate data

model, based on the provided feedback. An updated version of this prototype will be delivered and documented at

a later stage for deliverables D3.4 and D3.7.

 D3.2 – v.1.0

www.policycloud.eu

7

1 Introduction

This document is an accompanying report for the first iteration of “Cloud Infrastructure Incentives Management

and Data Governance: Software Prototype”, and is the second deliverable of WP3, covering tasks T3.1, T3.3, T3.4,

and T3.6. Based on the design and the specifications provided in D3.1 [1], all task participants collaborated towards

the implementation of their corresponding outcomes to be utilized or integrated in the platform in later stages,

and this first prototype is a snapshot of this effort. In the scope of T3.1 - Cloud Provisioning of the PolicyCLOUD

Infrastructure, focus was provided for delivering the actual infrastructure to describe the tools that will be used.

In the scope of T3.3 - Cloud Gateways & APIs for Efficient Data Utilization and T3.4 - Incentives Management, the

first prototypes of cloud getaways and Incentive management have been described respectively. Finally, for T3.6 -

Data Governance Model, Protection and Privacy Enforcement the first prototype of the mechanism that is used for

privacy enforcement and the protection of data is described. For all these tasks, this document provides the

preliminary work performed until M10.

1.1 Structure of the document

The rest of the document is structured as follows. Section 2 covers the provisioning process for the cloud

infrastructure of PolicyCLOUD, while Section 0 presents the Cloud Gateway components of the first prototype.

Section 4 describes the components for the identification and management of incentives, as provided for the first

prototype. Section 0 presents the first prototype of the data privacy mechanism. Finally, Section 6 provides the

conclusion of the document, while Section 7 adds the document references.

 D3.2 – v.1.0

www.policycloud.eu

8

2 Cloud Provisioning of the PolicyCLOUD

Infrastructure

The PolicyCLOUD infrastructure is supported by the RECAS-BARI [2], one cloud provider of the EGI Federation [3]

selected through an open call sent by EGI.eu after the 1st General Assembly meeting. To provision the cloud

resources during the project lifetime and guarantee a certain level of performance, a dedicated Service Level

Agreement (SLA) and an Operational Level Agreement (OLA) have been agreed with the customer (represented

by ATOS) and the cloud provider respectively. The SLA/OLA approval date is October, 13rd 2020. Through the

present agreement the cloud provider will allocate the following resources from August 2020 to December 2022:

Cloud Compute

Resource Centre RECAS-BARI
Category: Cloud Compute
Number of virtual CPU cores: 68
Memory per core (GB): 304
Public IP addresses: Yes. Access to the VPN is also provided.
Allocation type: Pledged
Other technical requirements: The INDIGO-DataCloud PaaS orchestrator [4] will be available on the same

resources, without an additional cost.
Payment mode offer: Pay-for-use1
Duration: 01/08/2020 - 31/12/2022

Online Storage

Resource Centre RECAS-BARI
Category Online Storage
Guaranteed storage capacity
[TB]:

2TB

Opportunistic storage
capacity [TB]:

N/A

Standard interfaces
supported:

POSIX/Object Storage

Storage technology: N/A
Other technical requirements: Additional 50-100GB of OpenStack Swift Storage will be made available,

without an additional cost.
Duration: 01/08/2020 - 31/12/2022
Payment ode offer: Pay-for-use
Allocation type: Pledged

Virtual Organisation

Supported VOs: vo.policycloud.eu
VO ID card: https://operations-portal.egi.eu/vo/view/voname/vo.policycloud.eu
VO-wide list: https://appdb.egi.eu/store/vo/vo.policycloud.eu

1 See service offer for specifications (e.g. pricing, administration)

https://www.egi.eu/services/cloud-compute/
https://www.egi.eu/services/online-storage/
https://operations-portal.egi.eu/vo/view/voname/vo.policycloud.eu
https://appdb.egi.eu/store/vo/vo.policycloud.eu

 D3.2 – v.1.0

www.policycloud.eu

9

Virtual Organisation

Provider AUP link https://documents.egi.eu/document/2623

Service Offer/Cost [€]

Compute 20,000€
Storage Free (included in the compute costs)
Technical support 5,000€
Total 25,000€2

TABLE 1 - RESOURCES INCLUDED IN THE EGI SERVICE LEVEL AGREEMENT

With this agreement the cloud provider will also guarantee the availability of the platform for a maximum

of 90 days from the end of the agreement, or until the final PolicyCLOUD review takes place (with no

additional costs). In order to review the terms and conditions for a possible additional extension, a check-

point will take place 3 months before the end of this agreement (September-October 2022).

Details about the agreements can be found in the EGI Document Repository [5].

In the coming months EGI.eu will:

• Monitor the provisioning of resources from the cloud provider,

• Produce Service Performance Reports on regular basis in order to measure the fulfilment of the agreed

service level targets, and

• Perform Customer Satisfaction Review process to review the whole agreement and identify possible

improvements for the agreement and services.

2.1 The INDIGO-DataCloud PaaS Orchestrator

To facilitate the deployment and the operation of a distributed Kubernetes cluster to support the project needs, an

orchestrator based on the INDIGO-DataCloud [6] PaaS will also be available on the allocated resources without any

additional costs. The INDIGO-DataCloud PaaS Orchestrator is the core component of the INDIGO PaaS layer.

More specifically, the PaaS Orchestrator service allows coordinating the provisioning of virtualized compute and

storage resources on distributed cloud infrastructures and the deployment of dockerized services and jobs on

Mesos clusters. The service comes with a set of application/service topologies ready-to-use that can be deployed

through a user-friendly web interface. Users can deploy complex virtual infrastructures or docker containers in an

automated way, through a user-friendly web interface. They can monitor the deployment state and get the relevant

endpoints to access the deployed services, once the deployment is complete. The high-level architecture of the

INDIGO-DataCloud PaaS Orchestrator is shown in Figure 1.

2 Excluding VAT (reverse charging)

https://documents.egi.eu/document/2623

 D3.2 – v.1.0

www.policycloud.eu

10

FIGURE 1 - ARCHITECTURE OF THE INDIGO-DATACLOUD PAAS ORCHESTRATOR

The Orchestrator receives the user deployment request in the form of a TOSCA template. Then it collects all the

information needed to select the best provider where the virtual infrastructure (i.e. the cluster of VMs) or the

dockerized service/job will be deployed. To this purpose, the Orchestrator relies on a set of auxiliary services:

• The SLAM Service that provides the prioritized list of SLAs per user/group;

• The Configuration Management DB (CMDB), that publishes the capabilities of the underlying IaaS service

platforms;

• The Data Management Services that provide the status of the data files and storage resources needed by

the user service/application;

• The Monitoring Service, that provides information about the availability of the IaaS services and their

metrics;

• The CloudProviderRanker Service (Rule Engine), that is in charge of computing the ranking of the

providers, based on some criteria, like the SLAs targets and the monitoring metrics.

This complex workflow is managed by the PaaS Orchestrator that implements the architecture described in Section

2.2. Instructions to access the INDIGO-DataCloud PaaS Orchestrator have been provided as Appendix in D3.1 -

Cloud Infrastructure Incentives Management and Data Governance: Design and Open Specification 1 [1].

2.1.1 Main Features of the INDIGO-DataCloud PaaS Orchestrator

The main features of the INDIGO-DataCloud PaaS orchestrator are described below:

• Support the provisioning and automated configuration of VMs on different Cloud Management

Frameworks: private clouds (e.g. Openstack, OpenNebula) and public clouds (e.g. Amazon, Azure).

• Support the deployment of containers (both long running services and batch-like jobs) on Mesos clusters.

 D3.2 – v.1.0

www.policycloud.eu

11

• Support the exploitation of specialized hardware (like GPUs and Infiniband): for example, the user can

request to deploy a VM or a docker container with one or more GPUs: the Orchestrator will automatically

discover the providers where these hw resources are available and will schedule the deployment there.

• Support the submission of jobs on HPC facilities that expose a QCG Gateway [7].

• Support for secrets management to store sensitive information safely:

o the Orchestrator and its web dashboard support the integration with Hashicorp Vault, a Secret

Manager, in order to store sensitive data, e.g. credentials for public clouds or ssh keys.

• Support the data-aware scheduling which allows the processing of jobs close to the data.

• Support the integration with Rucio [8], a Data Management Policy engine (QoS and Data Life Cycle) that

allows users to submit and manage data replication rules.

• Support workflows for data pre-processing at ingestion:

o the Orchestrator can be instructed to trigger a processing job as soon as new data is available.

2.2 Baseline technologies and tools

During the INDIGO-DataCloud project, this component has been extended and enhanced to support the specific

microservices building the INDIGO PaaS Layer. It delegates the actual deployment of resources to IM, OpenStack

Heat or Mesos frameworks based on templates written in TOSCA YAML Simple Profile v1.0 [9] and the ranked list

of sites (see Figure 2).

FIGURE 2 - ARCHITECTURE OF THE ORCHESTRATOR WITHIN THE PAAS LAYER

Thanks to this important achievement, using the PaaS Orchestrator and the TOSCA templates, the end user can

exploit computational resources without knowledge about the IaaS details: indeed the TOSCA standard language

ensures that the same template can be used to describe a virtual cluster on different cloud sites; then the

Infrastructure Manager implements the TOSCA runtime for contacting the different cloud sites through their

native APIs. The provisioning and configuration of the IaaS resources is therefore accomplished in a completely

transparent way for the end user. The same approach is used also for submitting dockerized applications and

 D3.2 – v.1.0

www.policycloud.eu

12

services to a Mesos cluster (and its frameworks Marathon and Chronos): the user can describe his request in a

TOSCA template and the Orchestrator provides the TOSCA runtime for contacting the Mesos master node,

submitting the request and monitoring its status on behalf of the user as detailed in the next section.

2.3 Source Code

The INDIGO-DataCloud PaaS Orchestrator is distributed under the Apache License 2.0 and its open source code is

available on GitHub [10]. The level of maturity of the service is TRL 8 [11] , where the Technology Readiness Level

(TRL) is the scale adopted by the EC. More specifically, the scale spans over nine levels as follows:

• TRL 1 – basic principles observed

• TRL 2 – technology concept formulated

• TRL 3 – experimental proof of concept

• TRL 4 – technology validated in lab

• TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of

key enabling technologies)

• TRL 6 – technology demonstrated in relevant environment (industrially relevant environment in the case

of key enabling technologies)

• TRL 7 – system prototype demonstration in operational environment

• TRL 8 – system complete and qualified

• TRL 9 – actual system proven in operational environment (competitive manufacturing in the case of key

enabling technologies; or in space)

2.4 Deployment Status

The development of the PaaS Orchestrator has been co-funded by several H2020 projects starting from 2015 with

the INDIGO-DataCloud project [6]. From 2015 onwards, the solution has been further developed in the context of

the eXtreme-DataCloud [12] and DEEP- HybridDataCloud [13] projects to support the needs of the target

communities. From 2018 the PaaS layer is one of the EOSC- hub [14] common services and it's registered in the

EOSC portal [15].

 D3.2 – v.1.0

www.policycloud.eu

13

3 Cloud Gateways & APIs for Efficient Data Utilization

The Cloud Gateway and API component will enhance the abilities and services offered by a unified Gateway to

move streaming and batch data from data owners into PolicyCLOUD data stores layers, which support both SQL

and NoSQL data stores and public and private data. Based on the specifications provided in D3.1 Cloud

Infrastructure Incentives Management and Data Governance Design and Open Specification 1 [1] of the

PolicyCLOUD project, the effort related to Cloud Gateways & APIs component will be focused on providing a

complete and “smart” entryway into PolicyCLOUD project, allowing multiple APIs or microservices to act

cohesively and thus provide a uniform, gratifying experience to each stakeholder. The provided Gateway API will

allow building scalable and robust APIs [16], while simplifying the interaction and data collection from various

sources and providers. On top of this, the main goal of this component is to handle a request by invoking multiple

microservices and aggregating the results [17]. Hence, it will enhance the design of resources and structure, add

dynamic routing parameters, and develop custom authorizations logic. PolicyCLOUD’s Cloud Gateway and API

component will support scalability, high availability, fault tolerance, and shared state without compromising

performance.

3.1 Prototype Overview

Under the scope of this Deliverable, the 1st Software Prototype of the Cloud Gateways & APIs component consists

of two main sub-components/microservices. The initial design of these two specific sub-components, that can be

used either for fetching data from an external file or from a social media platform like Twitter, includes complete

workflows and pipelines for pushing data into the PolicyCLOUD platform. These two sub-components base their

functionality on two different Use Cases according to D6.3 Use Case Scenarios Definition & Design [18] and are

being described into the below subsections. Currently these sub-components do not integrate with an

authentication mechanism to control access to them. The integration between Cloud Gateways & APIs component

and User Authorization mechanism is one of the next steps that will be implemented during the next Deliverables

and Software Prototypes, in order to ensure that all the required security standards are being met.

3.2 Main components of the prototype

3.2.1 Global Terrorism Database component (GTD Component)

The first sub-component that is being described in this Deliverable bases its functionality on Use Case 2.1.3

Scenario A as described in D6.3 Use Case Scenarios Definition & Design [18], where data coming from the Global

Terrorism Database (GTD) will be used in order to visualize a heatmap that shows the frequency of occurrence of

radicalization incidents in the geographic proximity of a region. The main goal of this sub-component is to obtain

data from the CSV file of the GTD and to update the PolicyCLOUD’s data stores. The GTD component is invoked

either by asynchronous workers as background processes, or by user demand after making request to the

appropriate API endpoint. The file database, which is hosted in a remote location, has a total size of 165 MB for its

initial state and it is in CSV format. After the database file has been successfully been fetched via an FTP connection,

it is downloaded to a local directory inside the sub-component’s filesystem. Afterwards, the file is been effectively

parsed, in order to maintain the overall good performance. On top of this, data are loaded in a local temporary

database by using batch techniques in order to be stored in a more efficient structure that enable the much easier

interaction with the database. Furthermore, the component provides a RESTful API that every user or external

service can interact with the GTD component.

 D3.2 – v.1.0

www.policycloud.eu

14

FIGURE 3 - ARCHITECTURE: GATEWAY’S GTD SUB-COMPONENT

3.2.2 Twitter Connector Component

The provided sub-component bases its functionality on Use Case 2.1.3 Scenario C as described in D6.3 Use Case

Scenarios Definition & Design [18], where data coming from the social media and especially from Twitter platform

will be used in order to visualize a bar chart that shows the main trends linked to radicalization. The main goal of

the Twitter Connector sub-component is to fetch data from the Twitter platform based on specific hashtags. In this

specific use case, the corresponding sub-component filters twitter data based on the high-interest hashtag “jihad”.

On top of this, this sub-component relies its functionality on the Twitter API for data collection. One of the major

limitations of data collection using the Twitter API is that the client machine always must keep up with the data

stream and if it could not then, the stream just disconnects. Hence, in order to overcome this limitation, the initial

design of this sub-component integrates also with Kafka [19] event streaming platform. One of the main benefits

of using Kafka with Twitter Stream is fault tolerance. To this end, instead of having a single Python module that

collects, processes, and saves everything into a JSON file, two modules are being provided for these functionalities.

The first module, also called as the “Producer”, collects data from the twitter stream and saves them as logs into

the Kafka queue without doing any processing. In the next step another module, also called as the “Consumer”,

reads the logs, and processes the data, essentially creating a decoupled process. A complete pipeline and

architecture of the Twitter Connector sub-component is shown in Figure 4.

FIGURE 4 - ARCHITECTURE: GATEWAY’S TWITTER CONNECTOR SUB-COMPONENT

To this end, a decoupled twitter stream has been developed, where the initial Twitter stream is divided into two

different modules. Thus, one module is responsible for retrieving data from the Twitter API and feeding them into

 D3.2 – v.1.0

www.policycloud.eu

15

the Kafka Cluster, the Producer Module, and one module for reading the data from the Kafka Cluster and processing

the data separately, the Consumer Module. Hence, raw data from Twitter are being processed without worrying

about the stream getting disconnected.

3.3 Interfaces

3.3.1 GTD component Application Programming Interface

The GTD sub-component provides a REST application interface following the OpenAPI specification in order to be

easier for the end user to discover the capabilities of the component and to provide well-structured documentation

for each of the component’s services. Furthermore, the component includes an API documentation page, by using

Swagger UI, so that we can provide a graphical interface for interacting with the API. This makes it easier for the

developer to explore all available requests and responses, which are listed including the required parameters,

without the need of setting up a client on his own.

FIGURE 5 - GTD’S SWAGGER OPENAPI INTERFACE

 D3.2 – v.1.0

www.policycloud.eu

16

3.3.2 GTD component Command Line Interface

The GTD sub-component also provides a command line interface for admin users who have access to the

components shell and with which it enables them to run commands in order to easily interact with different

services.

FIGURE 6 - GTD’S COMMAND LINE INTERFACE

3.3.3 Twitter Connector component Application Programming Interface

The Twitter Connector sub-component provides a REST application interface following the OpenAPI specification

in order to be easier for the end user to discover the capabilities of the component and to provide well-structured

documentation for each of the component’s services. Furthermore, the component includes an API documentation

page, by using Swagger UI, so that we can provide a graphical interface for interacting with the API. This makes it

easier for the developer to explore all available requests and responses, which are listed including the required

parameters, without the need of setting up a client on his own. In next Deliverables a unified and concrete REST

application interface will be provided for all the corresponding sub-components of the Cloud Gateways & APIs

component.

 D3.2 – v.1.0

www.policycloud.eu

17

FIGURE 7 - TWITTER CONNECTOR SWAGGER OPENAPI INTERFACE

3.4 Baseline technologies and tools

3.4.1 GTD component

The main component’s core functionalities are written in PHP v7.4. Moreover, in order to create a robust and

flexible API service, Laravel framework is being utilized. The service is running on a NGNIX server that can scale

very well as it can support thousands of connections per worker process and achieve great performance. For the

component’s temporary database, we used MySQL 5.7 because it is working out of the box with the Laravel’s

Eloquent ORM, but a migration to MongoDB has already started to be implemented, considering the flexibility,

scalability and performance the MongoDB provides.

3.4.2 Twitter Connector component

The implementation of the core functionalities of this component are written in Python 3.7. On top of this, Flask

framework is being used in order to create a robust and flexible API service. Moreover, Kafka event streaming

platform is utilized, so raw Twitter data can be processed without worrying about the stream getting disconnected.

3.5 Source code

3.5.1 GTD component Code Overview and Availability

Source code and an installation manual for the GTD component is available on this repository [20]. The installation

instructions and project requirements are firmly described inside the components README.md file, but they, also,

are presented and described particularly into the below subsections.

 D3.2 – v.1.0

www.policycloud.eu

18

3.5.1.1 PREVIEW

PolicyCloud GTD sub-component will be running on three separate service containers:

• The app service running PHP7.4-FPM.

• A DB service running MySQL 5.7 (Will be replaced with MongoDB in future software prototypes).

• A Nginx service that uses the app service to parse PHP code before serving the PolicyCloud GTD service

to the final user.

3.5.1.2 PREREQUISITES

• Access to an Ubuntu 18.04 local machine or development server as a non-root user with sudo privileges.

• Docker installed on the server.

• Docker Compose installed on the server.

• A remote FTP server to upload the GTD database CSV file.

3.5.1.3 INSTALLATION USING DOCKER

Installation instructions based on the corresponding docker installation are being followed in this subsection.

1. Download the PolicyCloud GTD project: git clone http://snf-

877903.vm.okeanos.grnet.gr/george/policycloud-gtd-service.git

2. Build the image locally: $ docker-compose build app

3. Copy the .env.example to the new .env file, run: $ cp .env.example .env

4. Open the new .env file and replace

DB_DATABASE=your_db_name /

DB_USERNAME=your_username /

DB_PASSWORD=your_password .

5. In the end of the file add your ftp server credentials

FTP_HOSTNAME=your_hostname /

FTP_USERNAME=your_username /

FTP_PASSWORD=your_password /

6. In the end of the .env file also include the name of the file which has uploaded to the server:

GTD_FILENAME=your_filename

7. Run the environment in background: $ docker-compose up -d

8. To show information about the state of the active services, run: $ docker-compose ps

9. If all 3 services are running install composer, run: $ docker-compose exec app composer install

10. If problems occur, please check the logs: $ docker-compose logs nginx

11. To generate unique application key, run: $ docker-compose exec app php artisan key:generate

12. To run all migrations for the DB, run $ php artisan migrate

3.5.1.4 USAGE

1. Open the browser and access server’s domain name or IP address on port 8000:
http://server_domain_or_IP:8000

2. To view all available REST endpoints in Swagger UI - OpenApi, please visit the
http://server_domain_or_IP:8000

http://snf-877903.vm.okeanos.grnet.gr/george/policycloud-gtd-service.git
http://snf-877903.vm.okeanos.grnet.gr/george/policycloud-gtd-service.git
http://server_domain_or_ip:8000/
http://server_domain_or_ip:8000/

 D3.2 – v.1.0

www.policycloud.eu

19

3.5.1.5 CLI TOOL

The usage of the CLI tool can be achieved either through a SSH connection into the Nginx service or anyone can

run:

$ docker-compose exec app php artisan gtd:fetch , in order to refresh the database with the newest version of the

Database file.

3.5.2 Twitter Connector Code Overview and Availability

Source code and an installation manual is available on this repository [21]. The installation instructions and project

requirements are firmly described inside the project’s README.md file, but they, also, presented and described

particularly into the below subsections.

3.5.2.1 PREVIEW

PolicyCLOUD’s Twitter connector sub-component will be running on two separate service containers:

• The app service running Python 3.7

• A Kafka producer container

• A Kafka consumer container

3.5.2.2 PREREQUISITES

• Access to an Ubuntu 18.04 local machine or development server as a non-root user with sudo privileges.

• Install docker-compose [22]

• Modify the KAFKA_ADVERTISED_HOST_NAME in docker-compose.yml to match your docker host IP

(Note: Do not use localhost or 127.0.0.1 as the host ip if you want to run multiple brokers.)

• Twitter API access tokens and keys provided from https://developer.twitter.com/en

3.5.2.3 USAGE

• Inside flask-app/.env directory add the provided Twitter API credentials

• docker-compose build

• docker-compose up -d

• docker ps dirfferent conainers must be up and running

o twitter-kafka

o twitter-zookeeper

o flask_dev

• Connect to flask container to start producer:

o docker exec -it /bin/bash

• Navigate to app directory:

o cd app

• Start Kafka producer in python:

o Open python twitter_connector_1.py file with an editor

o Change "bootstrap_servers='kafka'" in line 13 twitter_connector_1.py with the IP of the kafka

container

o RUN python twitter_connector_1.py

• Start Kafka consumer in python:

o Change "bootstrap_servers='kafka'" in line 10 python cosnumer.py with the IP of the kafka

container

o RUN python consumer.py

https://raw.githubusercontent.com/wurstmeister/kafka-docker/master/docker-compose.yml
https://developer.twitter.com/en

 D3.2 – v.1.0

www.policycloud.eu

20

3.6 Deployment Status

Currently the provided sub-components of the Cloud Gateways and APIs component are not deployed in a public

server. These sub-components are provided through docker installations. By using Docker in local machine during

the development process, different provided services of the sub-component can easily be deployed by running

commands in the Dockerfile. The latter ensures also that each component will run flawlessly later in any

production environment as far as Docker platform runs on this environment.

 D3.2 – v.1.0

www.policycloud.eu

21

4 Incentives Management

Based on the specification provided in D3.1 [1] the effort related to incentives management will be focused on

providing the following two main functionalities:

• Incentives Identification, allowing the policy maker to identify successful incentives able to attract and

engage citizens who will participate in the policy making life cycle.

• Incentives Management, allowing the policy maker to manage the identified incentives and the

crowdsourced data resulting from the participative external activity.

As the effort is still in the functional definition, there is not currently contribution in the form of demonstrator for

this component, that will be provided in the next iterations.

4.1 Main Capabilities

4.1.1 Incentives Identification

For the time being the work performed in the context of Incentives Identification has been done towards a manual

exploration of possible participants motivation through a set of surveys shared between the use cases. As main

results, Table 2 summarizes a first attempt to identify incentives which would motivate participants to take part

of the process.

Use Case Motivations HOW TO
MAG Voluntarism

Shaping a better future for the society

Lobbying

Improvement in the public services

Improvement in policy implemented

Increased awareness in the society

SARGA Greater commitment and participation
of users with the policies

Voluntarism

Shaping a better future for the society

Lobbying

Facilitate Government of Aragon and wine
producers the decision-making process
regarding agri-food promotion campaigns

Involvement of producers and end users in
the policies of the government of Aragon

SOFIA Established partnerships with the
municipality for collaboration

Voluntarism

Shaping a better future for the society

Lobbying

Improvement in the public services or
policies implemented related to urban
environment/ clean air/ transport / etc..

TABLE 2 - INCENTIVES PER USE CASE

4.1.2 Incentives Management

Regarding the management of incentives the following functionality has been extracted from the use cases:

• Declaration of Incentives. The policy maker should be able to register new incentives with a set of

attributes (incentives type, affected group, affected policies, actions type, participants result). Where:

 D3.2 – v.1.0

www.policycloud.eu

22

o Actions Type:

▪ evaluate existing policies

▪ provide feedback on existing priorities and KPIs

▪ propose new policies to be considered

▪ propose new focus areas that might be interesting to be investigated

• Crowdsource Data Ingestion and Summary. The policy maker should be able to visualize the repercussion

of the applied incentive by means of a summary statistic from the crowdsourced data. For example, the

policy maker would explore information such as the number of participants, the group to which the

participants belong, period data of participation, type of performed actions,…)

The participation task itself will be performed outside the PolicyCLOUD system, since the provision of a

crowdsourcing tool is out of the scope of the task.

As future improvements, a set of analyses performed over the crowdsourced data could be provided to the

policymaker. These new statistics will be evaluated for future versions. I.e: the opinion mining component,

from task 4.4, would be used to detect main topics in the citizen signals which would correspond to the main

problems founds in the urban environment and which might help policy maker in the creation of new policies.

4.2 Next Steps

As part of the upcoming prototype, the basic functionality for incentives management will be provided. As part of

this, a deepen research in the SOFIA use case will take place in order check the feasibility of coming across with a

text summarization solution based on text analysis which might be helpful to the policymaker in the management

of the incentives.

 D3.2 – v.1.0

www.policycloud.eu

23

5 Data Governance Model and Privacy Enforcement

mechanism

5.1 Prototype overview

The prototype’s purpose is to demonstrate the ability of the ABAC Engine to intercept a request, obtain the

attributes of the requestor and evaluate whether the request should be permitted, based on those attributes and

the enforced Policies. The two main components responsible for this functionality are the ABAC Server and the

ABAC Client Filter, while the prototype also contains a simple Web Client for testing purposes.

Keycloak [23] is selected as the Attribute Provider and User Authenticator for this version of the prototype. In the

upcoming months, we will examine the integration of our solution as part of the integrated PolicyCLOUD platform

and alternate authentication solutions that could be used.

The Data model is not available for this version of the prototype and will not be further mentioned in this

deliverable as it needs to be agreed with the various pilots. Our main focus was to create a first prototype that can

be used to display the proper function of the mechanism and then integrate the refined Data Model with this

prototype.

5.2 Main components of the prototype

5.2.1 ABAC Server

The ABAC server is the backbone of the ABAC Authorization Engine and is responsible for evaluating the access

requests authorization. It communicates with the ABAC Client to retrieve these requests and responds with a

Permit message based on the Policies currently applied and the attributes of the requestor. To set up the ABAC

Server locally Maven is required for an initial

• mvn clean install

For the first installation there would be no keystore and trustsore files present so they should be created for during

the initialization by executing:

• keytool -genkey -alias pdp-server -keyalg RSA -keysize 2048 -storetype PKCS12 -storepass

<YOUR_KEYSTORE_PASSWORD> -dname "CN=pdp-server,OU=Information Management Unit

(IMU),O=Institute of Communication and Computer Systems (ICCS),L=Athens,ST=Attika,C=GR" -ext

"SAN=dns:pdp-server,dns:localhost,ip:127.0.0.1" -keystore pdp-server-keystore.p12 -startdate -1d -

validity 3650

• keytool -list -v -storetype pkcs12 -keystore pdp-server-keystore.p12

• keytool -export -storetype PKCS12 -keystore pdp-server-keystore.p12 -storepass

<YOUR_KEYSTORE_PASSWORD> -alias pdp-server -file pdp-server.crt

• keytool -printcert -file pdp-server.crt

• keytool -import -alias pdp-server -file pdp-server.crt -storetype PKCS12 -keystore pdp-server-

truststore.p12 -storepass<YOUR_TRUST_STORE_PASSWORD>

• keytool -list -v -storetype pkcs12 -keystore pdp-server-truststore.p12

 D3.2 – v.1.0

www.policycloud.eu

24

 When trying to run the server, the Configuration directory must be selected and exported via:

• export CONFIG_DIR=src/main/resources/config

Finally, the jar produced by the mvn clean install is executed via:

• java -jar target/abac-authorization-server.jar

5.2.2 KeyCloak

A dockerised version of Keycloak is used as the Attribute Provider and User Authenticator. The image selected is

jboss/keycloak and the admin username and password, as well as the ports of the docker container are selected

in the sample docker-compose.yaml provided below:

FIGURE 8 - DOCKER-COMPOSE.YAML FILE

Along with Keycloak, a simple mysql database and mhpmyadmin are installed with basic settings. The Keycloak

Admin Console can be accessed by visiting localhost:8180 and providing the login credentials specified in Figure

8. The necessary steps for setting up Keycloak to act as a User Authentication provider involve firstly creating the

relevant realm. It is important that the name of the Realm matches the one used in the application.yml of the

service we are trying to secure.

 D3.2 – v.1.0

www.policycloud.eu

25

FIGURE 9 - KEYCLOAK REALM CREATION

The next step is the creation of a Client inside our newly created Realm. As mentioned before, it is also important

here that the new Client is named appropriately compared to the “resource” attribute in the application.yml of the

service we are trying to secure.

FIGURE 10 - KEYCLOAK CLIENT CREATION

It is important to ensure that “Standard Flow Enabled” is selected as this enables standard OpenID Connect

redirect-based authentication with authorization code. More specifically, in terms of OpenID Connect or OAuth2

specifications, this enables support of “Authorization Code Flow” [24] for this client. The “Valid Redirect URls field

 D3.2 – v.1.0

www.policycloud.eu

26

must contain the location of the service we are trying to secure. Moving on, relevant roles for the created Realm

are defined from the Admin Console as shown in Figure 11.

FIGURE 11 - KEYCLOAK REALM ROLES

User creation can also be handled by the Admin Console and for the purpose of this prototype a sample user with

username “user1” is created.

FIGURE 12 - KEYCLOAK USERS

At first the newly created user is not assigned the admin role but is given the member, offline_access and

uma_authorization roles. This default behaviour can be changed through Keycloak settings accordingly for newly

created or registered users.

FIGURE 13 - INITIAL ROLE MAPPINGS

 D3.2 – v.1.0

www.policycloud.eu

27

As shown in Figure 13, the Role Mappings Tab provides an overview of all the assigned Roles for this particular

user. Roles can be added or removed accordingly and furthermore there is the option to assign client specific roles

via the relevant dropdown menu.

FIGURE 14 – ADMIN ROLE GRANT

Figure 14 presents an example of the admin Role assignment to our test user. Information about users in Keycloak

is not restricted to Roles and Credentials, as each User can contain custom Attributes to further define their right

in the PolicyCLOUD ecosystem. Figure 15 shows such an example with the Date of Birth of the user added as a

custom Attribute from the relevant tab.

FIGURE 15 - CUSTOM USER ATTRIBUTE

These custom attributes are key for the PolicyCLOUD’s ecosystem ability to create and manage complex Policies

that contain multiple parameters for each User. It is essential therefore that Keycloak can communicate these

attributes in a safe and secure way. This can be achieved via Client Mappers in the Keycloak Admin Console, as

shown in Figure 16.

 D3.2 – v.1.0

www.policycloud.eu

28

FIGURE 16 - CLIENT ATTRIBUTE MAPPER

There are multiple options available for the Mapper Type but our Use Case dictates that we use the “User

Attribute”. The “Name” and “User Attribute” fields must match the name of the corresponding User Attribute from

Figure 15, while the “Claim JSON Type” dictates the type of the mapped value. By selecting “Add to ID token”, “Add

to access token”, “Add to userinfo” the attribute value is added as a claim to the relevant token. These can be used

by the ABAC Client and Server in order to securely transmit the claims to the ABAC Engine.

5.2.3 ABAC Client Filter

The ABAC Client Filter can be included in a web client and trigger the necessary interception to the ABAC

Authorization Engine. It depends on the ABAC Client and acts as a filter for the access to a specific API or website

and restricts access until it receives authorization by the ABAC Engine. Furthermore, it handles the IDToken

provided by Keycloak with the custom User Attributes needed for the Policy Evaluation and Enforcement. To

include the Filter in a web client the relevant dependency must be added in the pom.xml

<dependencies>

 <dependency>

 <groupId>eu.policycloud.authorization.abac</groupId>

 <artifactId>abac-authorization-client</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 </dependency>

</dependencies>

The next necessary step is to copy the truststore file of ABAC server into the application's resources directory.

Take care not to expose this file publicly.

• Cp abac-authorization/server/src/main/resources/config/pdp-server-truststore.p12

<YOUR_APP_HOME> /src/main/resources/truststore-client.p12

The final step is to include the appropriate variables, either through a .env file or script

AZ_CLIENT_TRUST_STORE_FILE=truststore-client.p12

AZ_CLIENT_TRUST_STORE_TYPE=PKCS12

 D3.2 – v.1.0

www.policycloud.eu

29

AZ_CLIENT_TRUST_STORE_PASSWORD=asclepios

AZ_SERVER_ENDPOINTS=https://localhost:7071/checkJsonAccessRequest

AZ_SERVER_ACCESS_KEY=7235687126587231675321756752657236156321765723

AZ_CALL_DISABLED=false

AZ_CALL_LOAD_BALANCE_METHOD=ORDER

AZ_CALL_RETRIES=1

export AZ_CLIENT_TRUST_STORE_FILE AZ_CLIENT_TRUST_STORE_TYPE

AZ_CLIENT_TRUST_STORE_PASSWORD AZ_SERVER_ENDPOINTS AZ_SERVER_ACCESS_KEY

AZ_CALL_DISABLED AZ_CALL_LOAD_BALANCE_METHOD AZ_CALL_RETRIES

If you want to change the API Key for both the server and client:

Create a long, difficult to guess (random) string. We suggest more than 32 characters long, including any

combination of capital and plain letters, numbers and symbols. Avoid using phrases or values that can be

guessed or extracted from context.

New API Key value must be set in both ABAC Server and ABAC Client configuration files.

• For ABAC Server, edit authorization-server.properties file and set property pdp.access-key.

• For ABAC Client, edit authorization-client.properties file and set property pdp.access-key or change the

corresponding environment variable AZ_SERVER_ACCESS_KEY.

5.2.4 Test Web Client

A simple Web Client can be used in order to test both the ABAC Server and Filter. The Web Client is a Spring-boot

application that contains an ABAC Authorization Filter that is responsible to intercept any access to the secured

API’s and instead request a Keycloak login. Based on the User Attributes retrieved from the Keycloak login, as well

as the implemented Policies evaluated at the ABAC Server, the request is either denied or permitted. An example

of the aforementioned login page during the interception of a request to get the user’s Date of Birth is shown on

Figure 17.

https://localhost:7071/checkJsonAccessRequest

 D3.2 – v.1.0

www.policycloud.eu

30

FIGURE 17 - INTERCEPT LOGIN

If the user login is successful and the ABAC Engine permits the request, based on the applied Policies, the Web

Client is able to retrieve the userID and Date of Birth, as shown on Figure 18.

FIGURE 18 - SUCCESSFUL ATTRIBUTES RETRIEVAL

 D3.2 – v.1.0

www.policycloud.eu

31

5.3 Baseline technologies and tools

5.3.1 Balana

Balana [25] was the first open-source reference implementation of the XACML protocol and is a widely adopted

solution. It supports the entire lifecycle of authorization processing. It is tightly integrated into the WSO2 Identity

Server [26]. Balana, as XACML engine of the WSO2 Identity Server has two major components, the Policy

Administration Point (PAP) and Policy Decision Point (PDP). Figure 19 - Balana PDP presented the component

architecture of the PDP that is our main interest.

FIGURE 19 - BALANA PDP

More details on the components of in the PDP architecture are presented below.

Entitlement Admin Service provides an API that is used to expose all PDP configurations, such as:

• Invalidating caches
• Refreshing policy, attribute, resource finder modules
• Retrieving PDP configurations
• Testing the PDP

 D3.2 – v.1.0

www.policycloud.eu

32

Entitlement Service provides XACML authorization API that supports the following three communication

methods with PEP.

• SOAP-based Web service
• Apache Thrift binary protocol [27]
• WS-XACML

Balana PDP is the core of the engine of Balana

Balana Test PDP is a duplication of Balana PDP can be only used for testing policies.

Carbon Policy Finder is a module that finds policies from different policy stores to evaluate an XACML request.

Figure 20 presents a high-level diagram of the usage of the carbon policy filter for the collection of the policies to

be evaluated.

FIGURE 20 - CARBON POLICY FILTER

Policy finder modules implementing the CarbonPolicyFinderModule interface should be registered and plugged

with the Carbon policy finder. WSO2 Identity Server provides by default a Carbon registry-based policy finder

module that can retrieve policies from a registry collection. Carbon policy finder finds XACML requests and creates

 D3.2 – v.1.0

www.policycloud.eu

33

the creates an effective policy. When an update in the policy store happens, Carbon policy finder can be re-

initialized automatically by the module, or it can be re-initialized using the API of the Entitlement Admin Service.

Carbon Attribute Finder is a module that is responsible for finding missing attributes for a given XACML request,

using the underlying PIP attribute finders. Figure 21 provides a high-level diagram for both the Carbon attribute

finder and resource finders.

FIGURE 21 - CARBON ATTRIBUTE FINDER

A PIP attribute finder module should implement the PIPAttributeFinder interface, and register it using the

entitlement properties configuration file to the Carbon attribute finder. WSO2 Identity Server by default

communicates with the underlying user store of the Identity Server that is built with ApacheDS [28].

On runtime, Carbon attribute finder checks for the attribute Id and hands it over to the proper module to handle,

while caching mechanism (provided by Carbon attribute finder) is used for caching the findings when possible.

Carbon Resource Finder is used to retrieve children or descendant resources of a given root level resource value,

used to fulfil requirements for a multiple decision profile. Similarly to the PIP attribute finder module, it has to

implement the PIPAttributeFinder interface.

In general, we consider Balana a highly extensive open source solution, suitable for the needs of

PolicyCLOUD.

 D3.2 – v.1.0

www.policycloud.eu

34

5.3.2 Keycloak

Keycloak [23] is probably the most powerful authentication proxy for micro-services and legacy systems. As

such, it abstracts the functionality of identity extraction and identity verification for different systems and

for different protocols. In parallel, it is able to map users and roles from existing legacy systems in what it calls

authentication realms. Through configured realms, Keycloak is able to centralize the login-process of various

systems through the implementation of many protocols such as oAuth2.0 [29] and OpenIDConnect [30](a.k.a.

OIDC). The OpenIDConnect signalling is presented in Figure 22.

FIGURE 22 - OIDC SIGNALLING

According to the flow diagram, a user is attempting to connect to a service which supports OIDC. The health care

service is redirecting the user to an OIDC provider that is configured to authenticate users based on a service-id

and a user-role mapping. The combination of the service-id and the user-role-mapping is addressed as a realm.

The OIDC server is “challenging” the user to authenticate based on various methods (username/password, X509

certificate etc.). Our software prototype utilizes the username/password method and upon successful login a

distinct set of claims are serialized as a token back to the user in order to use it in his/her interaction with the

service. These claims contain electronically signed attributes that can be used by the ABAC authorization

engine.

As a result, the OIDC signalling (and Keycloak in general) is extremely crucial for PolicyCLOUD ABAC even if it is

not an ABAC engine per se. It acts as an enabler of verifier attributes and attribute provider.

 D3.2 – v.1.0

www.policycloud.eu

35

5.4 Deployment Status

Currently the ABAC Server and Client are deployed locally. A sample Keycloak Server is hosted in Openstack cloud

provided by Ubitech. In the coming months, a dockerised version of all the ABAC components will be provided.

 D3.2 – v.1.0

www.policycloud.eu

36

6 Conclusion

In this document the progress in the technical work of the tasks T3.1, T3.3, T3.4, and T3.6 until M10 of the project

was presented. At first, we described the process of provisioning the PolicyCLOUD infrastructure that will be

supported by the RECAS-BARI. EGI is managing the whole process and has defined the process to be used to utilize

this cloud through the INDIGO-DataCloud PaaS Orchestrator. In the coming months the work related to the cloud

infrastructure will focus on monitoring the cloud resources provisioning, the implementation of customer

satisfaction review process to identify possible improvements, and on the creation of Service Performance Reports

on regular basis in order to measure the fulfilment of the agreed service level targets.

On this document it was also reported the status of the components called cloud gateways and are responsible to

obtain data from heterogenous data sources; gateways for twitter and the global terrorism database have been

provided. The integration between Cloud Gateways & APIs component and the user authorization mechanism is

one of the next steps that will be implemented during the next deliverables and Software Prototypes, in order to

ensure that all the required security standards are being met.

Regarding the incentives identification and management, as the effort is still in the functional definition, there is

not currently contribution in the form of demonstrator for this component, that will be provided in the next

iterations of this document (D3.5 and D3.8). However, an analysis of the components and preliminary input by the

use cases has been collected and documented. As part of the upcoming prototype, the basic functionality for

incentives management will be provided, and a deepen research in the SOFIA use case will take place.

Finally, in section 5, it was provided the components and technologies that are used to provide an ABAC based

access control mechanism suitable for PolicyCLOUD. This first prototype will be used to present the capabilities of

an access control to the use cases, collect feedback and proceed with the definition of a proper model to be used.

The development of these mechanisms is also tightly connected to the actual integration of the platform and the

authentication mechanism that will be used in it. These updates will be mostly reflected in the final version of the

software prototype.

The current version of the deliverable was the first version of the software prototype; the prototypes will be

further updated, and the updates will be documented in the upcoming deliverables (D3.4 and D3.7).

 D3.2 – v.1.0

www.policycloud.eu

37

7 References

[1] PolicyCLOUD, D3.1 Cloud Infrastructure Incentives Management and Data Governance Design and Open

Specification 1, 2020.

[2] RECAS-BARI, https://www.recas-bari.it/index.php/en/.

[3] E. Federation, https://www.egi.eu/federation/.

[4] I. P. Orchestrator, https://indigo-dc.gitbook.io/indigo-paas-orchestrator/.

[5] E. V. SLA, https://documents.egi.eu/public/ShowDocument?docid=3667.

[6] I. D. Project, https://cordis.europa.eu/project/id/653549.

[7] Q. Gateway, https://apps.man.poznan.pl/trac/qcg-computing.

[8] Rucio, https://rucio.cern.ch/.

[9] T. Y. S. Profile, http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-

YAML-v1.0.html.

[10] I. O. Repository, https://github.com/indigo-dc/orchestrator.

[11] T. R. Level, https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-

2020/annexes/h2020-wp1820-annex-g-trl_en.pdf.

[12] e.-D. project, http://www.extreme-datacloud.eu/.

[13] D.-H. project, https://deep-hybrid-datacloud.eu/.

[14] E.-h. project, https://eosc-hub.eu/.

[15] E. P. PaaS Orchestrator, https://marketplace.eosc-portal.eu/services/paas-orchestrator.

[16] C. e. a. Rodríguez, REST APIs: a large-scale analysis of compliance with principles and best practices.,

International conference on web engineering. Springer, Cham, 2016.

[17] H. a. H. K. Chawla, Implementing Microservices. Building Microservices Applications on Microsoft Azure.,

Apress, Berkeley, CA, 21-41, 2019.

[18] PolicyCLOUD, D6.3 Use Case Scenarios Definition & Design, 2020.

[19] A. Kafka, https://kafka.apache.org/.

[20] G. Component, http://snf-877903.vm.okeanos.grnet.gr/george/policycloud-gtd-service.git.

 D3.2 – v.1.0

www.policycloud.eu

38

[21] T. Connector, http://snf-877903.vm.okeanos.grnet.gr/george/policycloud-twitter-service.

[22] D.-c. install, https://docs.docker.com/compose/install/.

[23] KeyCloak, https://keycloak.org.

[24] A. C. Flow, https://auth0.com/docs/flows/authorization-code-flow.

[25] Balana, https://github.com/wso2/balana.

[26] W. I. Server, https://wso2.com/identity-and-access-management/.

[27] A. Thrift, https://thrift.apache.org/.

[28] ApacheDS, https://directory.apache.org/apacheds/.

[29] O. 2.0, https://oauth.net/2/.

[30] OpenIDConnect, https://openid.net/connect/.

[31] J. Doe, “The standard of standards,” Standardised quotes from standards, pp. 10-14, 2018.

[32] F. Dean, How to Write Bibliographies, Brussels: Adventure Works Press, 2006.

	Versioning and Contribution History
	Author List
	Abbreviations and Acronyms
	Executive Summary
	1 Introduction
	1.1 Structure of the document

	2 Cloud Provisioning of the PolicyCLOUD Infrastructure
	2.1 The INDIGO-DataCloud PaaS Orchestrator
	2.1.1 Main Features of the INDIGO-DataCloud PaaS Orchestrator

	2.2 Baseline technologies and tools
	2.3 Source Code
	2.4 Deployment Status

	3 Cloud Gateways & APIs for Efficient Data Utilization
	3.1 Prototype Overview
	3.2 Main components of the prototype
	3.2.1 Global Terrorism Database component (GTD Component)
	3.2.2 Twitter Connector Component

	3.3 Interfaces
	3.3.1 GTD component Application Programming Interface
	3.3.2 GTD component Command Line Interface
	3.3.3 Twitter Connector component Application Programming Interface

	3.4 Baseline technologies and tools
	3.4.1 GTD component
	3.4.2 Twitter Connector component

	3.5 Source code
	3.5.1 GTD component Code Overview and Availability
	3.5.1.1 Preview
	3.5.1.2 Prerequisites
	3.5.1.3 Installation Using Docker
	3.5.1.4 Usage
	3.5.1.5 CLI TOOL

	3.5.2 Twitter Connector Code Overview and Availability
	3.5.2.1 Preview
	3.5.2.2 Prerequisites
	3.5.2.3 Usage

	3.6 Deployment Status

	4 Incentives Management
	4.1 Main Capabilities
	4.1.1 Incentives Identification
	4.1.2 Incentives Management

	4.2 Next Steps

	5 Data Governance Model and Privacy Enforcement mechanism
	5.1 Prototype overview
	5.2 Main components of the prototype
	5.2.1 ABAC Server
	5.2.2 KeyCloak
	5.2.3 ABAC Client Filter
	5.2.4 Test Web Client

	5.3 Baseline technologies and tools
	5.3.1 Balana
	5.3.2 Keycloak

	5.4 Deployment Status

	6 Conclusion
	7 References

