Thesis Open Access

Development of an embedded device for real-time detection of atrial fibrillation and atrial flutter in single-channel ECG, using optimised classification based on a large training corpus

Auer, Eric


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[ Software source code for this thesis, FreeBSD license, DOI: 10.5281/zenodo.4560322 ]</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[ Hardware design files for this thesis, Creative Commons license, DOI: 10.5281/zenodo.4560352 ]</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M AlMusallam, A Soudani, Embedded Solution for Atrial Fibrillation Detection Using Smart Wireless Body Sensors, IEEE Sensors Journal, Vol. 19, No. 14 (2019) DOI: 10.1109/JSEN.2019.2906238</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">E Auer, Embedded detection of atrial fibrillation and atrial flutter in single-channel ECG, project report (2020) DOI: 10.5281/zenodo.4311642</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">R Duarte, A Stainthorpe, J Greenhalgh et al, Lead-I ECG for detecting atrial fibrillation in patients with an irregular pulse using single time point testing: a systematic review and economic evaluation, Health technology assessment 24(3):1-164 (2020) DOI: 10.3310/hta24030</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">A Goldberger et al, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation Online. 101 (23), pp. e215 -- e220 (2000)</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">RVL Hartley, A More Symmetrical Fourier Analysis Applied to Transmission Problems}, Proceedings of the IRE. 30 (3), pp. 144 -- 150 (1942) DOI: 10.1109/JRPROC.1942.234333</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">YW Hau, HW Lim, CW Lim, S Kasim, P204 Automated detection of atrial fibrillation based on stationary wavelet transform and artificial neural network targeted for embedded system-on-chip technology, European Heart Journal, Volume 41, Issue Supplement 1 (2020) DOI: 10.1093/ehjci/ehz872.075</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">IT Jolliffe, J Cadima, Principal component analysis: A review and recent developments, Philosophical Transactions of the Royal Society A, 374: 20150202 (2016) DOI: 10.1098/rsta.2015.0202</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">H Khamis, R Weiss, Y Xie, C-W Chang, NH Lovell, SJ Redmond, QRS detection algorithm for telehealth electrocardiogram recordings, IEEE Transaction in Biomedical Engineering, vol. 63(7), p. 1377-1388 (2016) DOI: 10.7910/DVN/QTG0EP</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">R Kramme, KP Hoffmann, RS Pozos (eds.), Springer Handbook of Medical Technology (2011) ISBN: 9783540746577</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">O Lahdenoja, T Humanen, Z Iftikhar, et al, Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone, IEEE Journal of Biomedical and Health Informatics 22(1):108-118 (2018) DOI: 10.1109/jbhi.2017.2688473</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">TS Lugovaya, Biometric human identification based on electrocardiogram}, Master's thesis, Faculty of Computing Technologies and Informatics, Electrotechnical University LETI, Saint-Petersburg (2005) with Physionet ECGIDDB 1.0.0 dataset</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">K Medhi, Heterogeneous Dataset of Arrhythmia}, Mendeley Data, v1 (2019) DOI: 10.17632/mmhw3vhf6w.1</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">N Menche (ed.), Biologie, Anatomie, Physiologie (2007) ISBN: 9783437268014</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">GB Moody, RG Mark, A new method for detecting atrial fibrillation using R-R intervals, Computers in Cardiology. 10:227-230 (1983)</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M Nabian, A Nouhi, Y Yin, S Ostadabbas, A Biosignal-Specific Processing Tool for Machine Learning and Pattern Recognition, IEEE-NIH 2017 Special Topics Conference on Healthcare Innovations and Point-of-Care Technologies (HI-POCT 2017)</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">S Paine, The am atmospheric model (2019) DOI: 10.5281/zenodo.640645</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">J Pan, WJ Tompkins, A Real-Time QRS Detection Algorithm, IEEE Transactions on Biomedical Engineering, Vol BME-32, No. 3 (1985)</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">SC Pei, CC Tseng, IIR Multiple Notch Filter Design Based on Allpass Filter IEEE Tencon (1996) DOI: 10.1109/TENCON.1996.608814</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">CRL Perales, HGC van Spall, S Maeda et al., Mobile health applications for the detection of atrial fibrillation: a systematic review, EP Europace, euaa139 (2020) DOI: 10.1093/europace/euaa139</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">J Peterson, D Kynor, Intracardiac Atrial Fibrillation Database, Physionet IAFDB 1.0.0 dataset</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">G P Pizzuti, S Cifaldi, G Nolfe, Digital Sampling Rate and ECG Analysis, J Biomed. Eng., 1985 ; 7(3) : 247 -- 250 DOI: 10.1016/0141-5425(85)90027-5</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">AA Reeves, Optimized Fast Hartley Transform for the MC68000 with Applications in Image Processing, Master's thesis (1990)</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">F Rincón, PR Grassi, N Khaled, D Atienza, D Sciuto, Automated real-time atrial fibrillation detection on a wearable wireless sensor platform, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2012) DOI: 10.1109/EMBC.2012.6346465</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Sedghamiz, BioSigKit: A Matlab Toolbox and Interface for Analysis of BioSignals}. Journal of Open Source Software, 3(30), 671, (2018) DOI: 10.21105/joss.00671</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">SW Smith, The Scientist and Engineer's Guide to Digital Signal Processing (1998) ISBN: 0-7506-7444-X</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">P Wagner, N Strodthoff, R Bousseljot, W Samek, T Schaeffter, PTB-XL, a large publicly available electrocardiography dataset (2020) DOI: 10.13026/x4td-x982 and Physionet PTB-XL 1.0.1 dataset</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">P Wagner, N Strodthoff, R Bousseljot, D Kreiseler, FI Lunze, W Samek, T Schaeffter, PTB-XL: A Large Publicly Available ECG Dataset. Scientific Data (2020) DOI: 10.1038/s41597-020-0495-6</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">ecg</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">atrial fibrillation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">esp32</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">embedded system</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">medical engineering</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">open hardware</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">open source</subfield>
  </datafield>
  <datafield tag="502" ind1=" " ind2=" ">
    <subfield code="c">University of Applied Sciences Saarbrücken (htwsaar)</subfield>
  </datafield>
  <controlfield tag="005">20210318164756.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Master's Thesis, Neural Engineering, University of Applied Sciences Saarbrücken (htwsaar)
Supervisors: Prof. Dr. Oliver Scholz, Prof. Dr. rer. nat. Dr. rer. med. habil. Daniel J. Strauss</subfield>
  </datafield>
  <controlfield tag="001">4560151</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Applied Sciences Saarbrücken (htwsaar)</subfield>
    <subfield code="4">ths</subfield>
    <subfield code="a">Scholz, Oliver</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Applied Sciences Saarbrücken (htwsaar)</subfield>
    <subfield code="4">ths</subfield>
    <subfield code="a">Strauss, Daniel</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">7277421</subfield>
    <subfield code="z">md5:46c8309ca69b6aea14a582c65daa0158</subfield>
    <subfield code="u">https://zenodo.org/record/4560151/files/master_eric_auer_2020-12-27.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-12-27</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4560151</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Applied Sciences Saarbrücken</subfield>
    <subfield code="a">Auer, Eric</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Development of an embedded device for real-time detection of atrial fibrillation and atrial flutter in single-channel ECG, using optimised classification based on a large training corpus</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Atrial fibrillation (A-Fib) and atrial flutter are widespread medical conditions of the heart. Loss of coordination between atrial and ventricular activities affects the smooth circulation of blood, causing an increased risk of blood clotting, which in turn elevates risk of pulmonary embolisms and cerebral infarction. However, the condition is not necessarily noticed by patients, for example through palpitations or tachycardia.&lt;/p&gt;

&lt;p&gt;A custom embedded device developed for this master&amp;#39;s thesis helps people to evaluate whether they are experiencing atrial fibrillation at a specific moment. The device measures single-channel ECG for less than one minute and instantly classifies it as either A-Fib, normal sinus rhythm (NSR) or undecided (low measurement quality or atypical ECG).&lt;/p&gt;

&lt;p&gt;Building on an earlier proof of concept project work by the author, this thesis presents a fully integrated, custom device, using an advanced classification algorithm trained on thousands of short, annotated ECG fragments from the PTB-XL corpus. The algorithm uses morphological analysis of the averaged ECG shape, properties of the R/R interval distribution and spectral analysis of the ECG to create a feature vector used for classification. Analysis and raw ECG data can be transferred via Bluetooth at the user&amp;#39;s discretion.&lt;br&gt;
&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">documents</subfield>
    <subfield code="a">10.5281/zenodo.4560322</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">documents</subfield>
    <subfield code="a">10.5281/zenodo.4560352</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">continues</subfield>
    <subfield code="a">10.5281/zenodo.4311642</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">cites</subfield>
    <subfield code="a">10.13026/x4td-x982</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">cites</subfield>
    <subfield code="a">10.1038/s41597-020-0495-6</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4560150</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4560151</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
</record>
85
69
views
downloads
All versions This version
Views 8585
Downloads 6969
Data volume 502.1 MB502.1 MB
Unique views 6666
Unique downloads 5151

Share

Cite as