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Abstract
This paper summarizes the participation of
the Laboratoire Informatique, Image et Inter-
action (L3i laboratory) of the University of
La Rochelle in the Recognizing Ultra Fine-
grained Entities (RUFES) track1 within the
Text Analysis Conference (TAC) series of eval-
uation workshops. Our participation relies on
two neural-based models, one based on a pre-
trained and fine-tuned language model with a
stack of Transformer layers for fine-grained en-
tity extraction and one out-of-the-box model
for within-document entity coreference. We
observe that our approach has great potential
in increasing the performance of fine-grained
entity recognition. Thus, the future work envi-
sioned is to enhance the ability of the models
following additional experiments and a deeper
analysis of the results.

1 Introduction

Fine-grained entity recognition aims at labeling en-
tity mentions in context with one or more specific
types organized in a hierarchy (e.g., Photographer
is from a Artist that in turn, is a subtype of PER2).
The need for a wider variety of fine-grained enti-
ties (e.g., technical terms, lawsuits, disease, crisis,
biomedical entities) (Ji et al., 2019) can support
the development of real-world applications that
combine several information sources that include
both text sources and knowledge bases; e.g., ques-
tion answering (Lin and Ji, 2019), relation extrac-
tion systems (Yao et al., 2010) that need access to
knowledge bases i.e. gazetteers, or named entity
recognition systems (Ehrmann et al., 2020a,b) for
supporting more accurate entity linking in histori-
cal documents.

In the context of the Recognizing Ultra Fine-
grained Entities (RUFES) track3 of the Text Anal-

1https://tac.nist.gov/2020/KBP/RUFES/
2PER refers to the entity type Person.
3https://tac.nist.gov/2020/KBP/RUFES/

ysis Conference (TAC) series of evaluation work-
shops, the main task consisted in automatically
identifying fine-grained entities as clusters of
names, nominals, and/or pronominal mentions, and
classifying them into one or more of the types de-
fined in a detailed ontology developed by NIST4.
This year, the track focused on document-level en-
tity discovery and only on English source docu-
ments.

The track had two phases: a preliminary phase
where the data is provided along with a limited
annotated set of samples (50 documents), and a
second phase during which human feedback was
provided for the preliminary submissions based on
a user model of how analysts might interact with
the systems. The final results include this feedback.

This paper presents the participation of the Lab-
oratoire Informatique, Image et Interaction (L3i
laboratory) at the University of La Rochelle at TAC
KBP RUFES 2020. We applied our recent pro-
posed model for coarse-grained and fine-grained
named entity recognition (Boros et al., 2020a,b)
and we used an out-of-the-box neural-based entity
coreference model for detecting the mentions that
refer to the same entity.

The remaining of the paper is organized as fol-
lows: we detail the data pre-processing step and our
proposed methods in Section 2. Section 3 presents
the results and Section 4 finalizes the paper with
several conclusions and envisioned future work.

2 Methods

We separated RUFES in two sub-tasks:

• Entity extraction: the detection and the classi-
fication of fine-grained entity types including
the named, nominal, and pronominal men-
tions for each mention (labeled as NAM,
NOM, and PRO, respectively);

4https://www.nist.gov/
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https://tac.nist.gov/2020/KBP/RUFES/
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• Within-document entity coreference resolu-
tion: the detection of the referential mentions
in a document that point to the same entity.

2.1 Data Pre-processing

The KBP 2020 RUFES dataset provided by the
organizers consisted of the development source
documents and evaluation source documents drawn
from a collection of Washington Post news articles.

The development source corpus and the evalua-
tion source corpus each comprised approximately
100, 000 articles from which 50 documents were
annotated for the development set with entity types
from an ontology that contains approximately 200
fine-grained entity types and that followed the same
three-level x.y.z hierarchy as in the TAC-KBP 2019
EDL track (Ji et al., 2019).

The provided data was organized into two for-
mats: ./rsd/: “raw source data” (rsd) plain text
form of the new article; and ./ltf/: “logical text
format” (ltf) derived from the rsd version.

For the data pre-processing, we used the
ltf.xml files that each contained a fully seg-
mented and tokenized version of the corresponding
rsd file5. Next, we converted the data in IOB6 for-
mat as shown in the following example:

Figure 1: Data formatting example for the KBP 2020
RUFES dataset.

2.2 Entity Extraction

Due to the complexity and characteristics of the
fine-grained sub-task, we made use of our re-
cently proposed model for coarse-grained and fine-
grained named entity recognition (Boros et al.,
2020a,b) that consists in a hierarchical, multitask
learning approach, with a fine-tuned encoder based

5Segments (paragraphs) and the tokens (words) are marked
off by XML tags (SEG and TOKEN), with “id” attributes
(which are only unique within a given XML file) and character
offset attributes relative to the corresponding rsd.txt file.

6https://en.wikipedia.org/wiki/Inside%
E2%80%93outside%E2%80%93beginning_
(tagging)
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Figure 2: Detailed model proposed for entity extraction
in Boros et al. (2020a,b).

on Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019).

This model includes the use of a stack of Trans-
former (Vaswani et al., 2017) blocks on top of the
BERT encoder. The multitask prediction layer con-
sists of separate conditional random field (CRF)
layers. The architecture of the model is presented
in Figure 2.

The added layers are a stack of Transformer
blocks (encoders). As proposed by Vaswani et al.
(2017), this model is a deep learning architecture
based on multi-head attention mechanisms with
sinusoidal position embeddings 7. It is composed
of a stack of identical layers. Each layer has two
sub-layers. The first layer is a multi-head self-
attention mechanism, while the second one is a
simple, position-wise fully connected feed-forward
network. A residual connection is around each of
the two sub-layers, followed by layer normaliza-
tion.

We decided to add a stack of Transformer layers
due to the assumption that additional hyperparam-
eters can increase the ability of the architecture to
better model long-range contexts and alleviate the
number of spurious predicted entities, as observed
in Boros et al. (2020a).

Because of multitask learning, this method has a
label independence assumption, which is not valid
for fine-grained entity typing. For example, if the
model is confident at predicting the type Photog-
rapher, it should promote its parents of type Artist
and PER, but discourage entity types as in ORG

7In our implementation, we used learned absolute posi-
tional embeddings (Gehring et al., 2017) instead, as suggested
by Wolf et al. (2019). Vaswani et al. (2017) found that both
versions produced nearly identical results.
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and its descendant types (i.e. Association, Com-
mercialOrganization). In order to capture inter-
dependencies between types, we post-process the
predictions by checking them again against the
ontology terms, and by offering more confidence
to the last predicted entity subtype. For exam-
ple, if we take the subtype ProvinceState with its
parent GPE, and if “Illinois” was recognized as
LOC.ProvinceState, we lookup ProvinceState in
the ontology and we automatically correct the pre-
diction to GPE.ProvinceState.

Parameters For the pre-trained BERT encoder,
we used the bert-large-cased model. We
added two Transformer layers, with the hidden size
of 128 and 12 number of self-attention heads8. We
trained for 10 epochs, with Adam optimizer with
weight decay, 2× 10−5 learning rate and a mini-
batch of dimension 8.

2.3 Within-document Entity Coreference
Resolution

For detecting the referential mentions in a docu-
ment that point to the same entity, we used an out-
of-the-box tool, NeuralCoref9, which is a pipeline
extension for spaCy 2.1+10 (Honnibal and Montani,
2017) that annotates and resolves coreference clus-
ters using a neural-based method. Due to a lack of
time and resources, we did not re-train this model
on the KBP 2020 RUFES dataset. The model was
previously trained on OntoNotes 5.0 dataset11.

NeuralCoref has two sub-modules:

• a rule-based mentions detection module which
uses spaCy’s tagger, parser and entity annota-
tions to identify a set of potential coreference
mentions;

• a feed-forward neural-network which com-
pute a coreference score for each pair of po-
tential mentions. This scoring system is an
adaptation of Clark and Manning (2016a,b).

We applied this model in a within-document con-
text, with the default parameters.

8The parameters correspond to the best configuration re-
ported by Boros et al. (2020a).

9https://github.com/huggingface/
neuralcoref

10https://spacy.io/
11https://www.gabormelli.com/RKB/

OntoNotes_Corpus

2.4 Rule-based Feedback Inclusion

In the second phase of the track, after receiving the
feedback, we inspected the most frequent types of
error produced by our methods.

A majority of the mistakes, around 46% out of
400 (the first 40 errors detected in ten random doc-
uments were reported) were system mention-level
entity types that do not exactly match the gold
mention-level entity types (including the level of
granularity). Around 11% were extraneous men-
tions (a system mention span does not exactly
match or overlap with any gold mention span), 5%
of wrong extents (a system mention span and gold
mention span overlap but have different extents),
12% missing mentions (a gold mention span does
not exactly match any system mention span), and
around 11% had the wrong entity coreference, ei-
ther missing, incorrect or spurious (problems in
linking a system mention to a mention of the same
entity that occurred earlier in the document).

Thus, we focused on the feedback related to the
detection of the wrong type of entity (46% out of
all errors), and we integrated this feedback in a
rule-based manner by automatically creating a set
of rules to change the predictions accordingly. One
common mistake produced by our system was re-
lated to entities that had one of the ontology terms
included in the entity; For instance, “Norovirus”
was recognized as GPE (geopolitical entity) instead
of Pathogen.Virus. Therefore, for every entity that
included a fine-grained ontology type i.e. “Air-
port”, “Hospital”, “Highway”, a rule was created
to change the predictions into the correct types.

3 Results

In the initial phase, we submitted two runs named
1-first-rufes and 2-first-rufes. In the second phase,
after receiving feedback for a sample of our previ-
ous predictions, we submitted another two runs re-
ferred to as 1-feedback-rufes and 2-feedback-rufes.

The metrics reported in Table 1 are imple-
mented by neleval12. For the entity extraction
evaluation, we report the strong mention match
(where an entity span must match a gold
span exactly to be counted as correct) and the
strong typed mention match (that additionally re-
quires the correct entity type). For the entity coref-
erence evaluation (Pradhan et al., 2014), we report

12More details about the TAC evaluation tool can
be found here https://neleval.readthedocs.io/
en/latest/.
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Submission strong
mention
match

strong
typed
mention
match

mention
ceaf

typed
mention
ceaf

entity
ceaf

fine grain
typing

1-first-rufes 0.868 0.745 0.552 0.503 0.551 0.3188
2-first-rufes 0.868 0.745 0.578 0.503 0.567 0.3188
1-feedback-rufes 0.868 0.745 0.578 0.504 0.567 0.3204
2-feedback-rufes 0.868 0.745 0.578 0.504 0.567 0.3239

Table 1: The scoring results (F-score) for RUFES 2020 evaluation for all our submissions.

the typed mention ceaf, the entity ceaf, and men-
tion ceaf metrics. We also report the RUFES final
score, fine grain typing.

From the scoring results for our submissions re-
ported in the Table 1, we notice that the impact
of the ruled-based feedback inclusion is rather in-
significant. The slight differences in the scores
when comparing 1-first-rufes and the other submis-
sions regarding the entity ceaf and mention ceaf
metrics are due to the fact that we did not approach
the entity coreference for our first submission.

4 Conclusions

This paper described our approach for the 2020
TAC RUFES task that implied fine-grained entity
recognition and within-document entity corefer-
ence. We presented our proposed models, and we
reported the results obtained in the context of the
track. In future work, we will focus on enhancing
the ability of the models following additional exper-
iments by refining the entity extraction architecture
in order to be able to take into consideration the
inter-dependencies between entity types. Regard-
ing the entity coreference model, we could explore
a further fine-tuning of the out-of-the-box model on
the KBP RUFES annotated documents. Moreover,
a deeper and more qualitative analysis of the types
of errors is intended.
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