Planned intervention: On Wednesday April 3rd 05:30 UTC Zenodo will be unavailable for up to 2-10 minutes to perform a storage cluster upgrade.
Published September 22, 2020 | Version v1
Journal article Open

Rapid Spreading of SARS-CoV-2 Infection and Risk Factors: Epidemiological, Immunological and Virological Aspects

  • 1. Department of Internal Medicine, Adana Health Practice and Research Center, University of Health Sciences, Turkey
  • 2. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey

Description

Abstract

SARS-CoV-2, the third coronavirus associated with severe respiratory infections in humans, spreads more easily and quickly in the community, with a higher infectiousness rate compared to the other two betacoronavirus species (SARS-CoV and MERS-CoV). The SARS-CoV-2 pandemic, in which the number of cases worldwide has exceeded 30 million, has been the biggest global epidemic of the last century with serious concerns and socio-economic impacts. Educational activities, meetings, worship, tourism, trade and sports organizations came to a halt in many countries during the pandemic period and national and international travel restrictions were applied. Also, in most countries, to protect the population at risk and to slow/stop the spread of infection; nationwide or regional curfew restrictions have been imposed according to risk analysis, and public health measures such as the obligation to wear a mask and quarantine precautions have been taken. The starting time of implementation of these measures, duration and controlling of the restrictions has been one of the important parameters determining the degree of countries affected by the epidemic. Studies on transmission routes of SARS-CoV-2 infections provide new information on epidemiological, immunological and virological parameters that are effective in the community spread of the virus. Epidemiological parameters generally include age, gender, presence of concomitant diseases/conditions, sociocultural habits, the role of asymptomatic persons and reservoir animals, seasonality of infections. Immunological factors include conditions associated with the immune response, such as susceptible individuals with immunodeficiency, the role of people who shed the virus for a long time, the level and duration of protective immunity in recovered people, effectiveness of active and passive immunization, the importance of viral load in the transmission and clinical course. Among the virological parameters that can affect the spread of the infection include the resistance of the virus to environmental conditions and disinfectants, receptor affinity and the degree of adaptation to humans, possible mutations associated with immune escape and virulence. In this article, by mentioning the situations that may pose a risk for the transmission, social spread and clinical course of infections, the main protective measures under the related topics are highlighted.

Özet

İnsanlarda ciddi solunum yolu enfeksiyonları ile ilişkili üçüncü koronavirus olan SARS-CoV-2 diğer iki betakoronavirusa (SARS-CoV ve MERS-CoV) kıyasla yüksek bulaştırıcılık hızı ile toplumda daha kolay ve hızlı bir şekilde yayılmaktadır. Dünya genelindeki vaka sayısının 30 milyonu geçtiği SARS-CoV-2 pandemisi neden olduğu ciddi endişeler ve sosyo-ekonomik etkiler ile son yüzyılın en büyük küresel salgını olmuştur. Pandemi sürecinde birçok ülkede eğitim faaliyetleri, toplantılar, ibadet, turizm, ticaret ve spor organizasyonları durma noktasına gelmiş ve ulusal ve uluslararası seyahat kısıtlamaları uygulanmıştır. Yine çoğu ülkede risk altındaki popülasyonu korumak ve enfeksiyonun yayılımını yavaşlatmak / durdurmak için ülke genelini kapsayan ya da risk analizlerine göre bölgesel sokağa çıkma kısıtlamalarına gidilmiş, maske takma zorunluluğu ve karantina önlemleri gibi halk sağlığı tedbirleri alınmıştır. Bu tedbirlerin uygulamaya başlama zamanı, uygulama süresi ve denetimi ülkelerin salgından etkilenme derecelerini belirleyen önemli parametrelerden biri olmuştur. SARS-CoV-2 enfeksiyonlarının bulaşma yollarına ilişkin çalışmalar virüsün toplumsal yayılımında etkili olan epidemiyolojik, immünolojik ve virolojik parametrelere dair yeni bilgiler sunmaktadır. Epidemiyolojik parametreler genel olarak yaş, cinsiyet, eşlik eden hastalıkların varlığı, sosyokültürel alışkanlıklar, asemptomatik kişilerin ve rezervuar hayvanların rolü, enfeksiyonların mevsimselliği gibi özellikleri içerir. İmmünolojik faktörler arasında bağışıklık yetmezliği olan duyarlı bireyler, uzun süreli virüs saçan kişilerin bulaştaki rolü, iyileşen kişilerde koruyucu bağışıklığın düzeyi ve devam süresi, aktif ve pasif immünizasyon uygulamalarının etkinliği, viral yükün bulaş ve klinik seyirdeki önemi gibi immün yanıt ile ilişkili durumlar yer alır. Enfeksiyonun yayılmasını etkileyebilecek virolojik parametreler arasında ise virüsün çevresel koşullara ve dezenfektanlara direnci, reseptör afinitesi ve insanlara adaptasyon derecesi, immün kaçış ve virülans ile ilişkili olası mutasyonlar gibi özellikler bulunur. Bu makalede enfeksiyonların bulaşı, toplumsal yayılımı ve klinik seyri için risk oluşturabilen durumlara değinilerek ilgili konu başlıkları altında temel koruyucu önlemlere dikkat çekilmiştir.

Notes

SARS-CoV-2 Enfeksiyonunun Hızlı Yayılımı ve Risk Faktörleri: Epidemiyolojik, İmmünolojik ve Virolojik Bakış

Files

jmvi.2020.12.pdf

Files (634.2 kB)

Name Size Download all
md5:5e695c0d5fec37d9b7aaf496d9019734
634.2 kB Preview Download

Additional details

References

  • 1. Perlman S. Another Decade, Another Coronavirus. N Engl J Med 2020; 382(8): 760-2.
  • 2. Huang C, Wang Y, Li X, Ren L, Zhao J5, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
  • 3. Leung K, Wu JT, Liu D, Leung GM. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet 2020; 395(10233): 1382‐93.
  • 4. World Health Organization (WHO), Geneva, Switzerland. Pneumonia of unknown cause – China, Disease outbreak news, 5 January 2020. Available at: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/ [Accessed April 18, 2020].
  • 5. World Health Organization (WHO), Geneva, Switzerland. WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ [Accessed August 20, 2020].
  • 6. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
  • 7. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18): 1708‐20.
  • 8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
  • 9. Karadaş Ö, Öztürk B, Sonkaya AR. A prospective clinical study of detailed neurological manifestations in patients with COVID-19. Neurol Sci 2020; 41(8): 1991-5.
  • 10. Adam DC, Wu P, Wong JY, Lau EHY, Tsang TK, Cauchemez S, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat Med 2020. [Epub ahead of print]
  • 11. Wang W, Xu Y, Gao R, Lu R, Han K, Wuet G, al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020; 323(18): 1843-4.
  • 12. Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. Interim U.S. Guidance for Risk Assessment and Public Health Management of Healthcare Personnel with Potential Exposure in a Healthcare Setting to Patients with Coronavirus Disease 2019 (COVID-19). Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assesment-hcp.html [Accessed April 18, 2020].
  • 13. World Health Organization (WHO), Geneva, Switzerland. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Available at: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations [Accessed April 18, 2020].
  • 14. Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ Res 2020;188: 109819.
  • 15. Vivanti AJ, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Do Cao J, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun 2020; 11(1): 3572.
  • 16. Wang Y, Wang Q, Wang K, Song C, Guo Z, Hu W. A Case of COVID-19 with Ultra-Long Incubation Period. Infect Control Hosp Epidemiol 2020; 1‐2. [Epub ahead of print].
  • 17. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020; 7(1): 11.
  • 18. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020; 382(13): 1199‐1207.
  • 19. Bar-On YM, Flamholz A, Phillips R, Milo R. SARS-CoV-2 (COVID-19) by the numbers. Elife 2020; 9. pii: e57309.
  • 20. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020; 323(14): 1406-7.
  • 21. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM, et al. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J Clin Med 2020; 9(2): 538.
  • 22. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med 2020; 172(9): 577‐82.
  • 23. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020; 92: 214-7.
  • 24. Casey M, Griffin J, McAloon CG, Byrne AW, Madden JM, McEvoy D, et al. Pre-symptomatic transmission of SARS-CoV-2 infection: a secondary analysis using published data. medRxiv 2020.05.08.20094870.
  • 25. Ji LN, Chao S, Wang YJ, Li XJ, Mu XD, Lin MG, et al. Clinical features of pediatric patients with COVID-19: a report of two family cluster cases. World J Pediatr 2020; 16(3): 267-70.
  • 26. National Centre for Infectious Diseases and Academy of Medicine, Singapore. Position Statement on Period of Infectivity to Inform Strategies for De-Isolation for Covid-19 Patients, 23 May 2020. Available at: https://www.ams.edu.sg/view-pdf.aspx?file=media%5c5556_fi_331.pdf&ofile=Period+of+Infectivity+Position+Statement+(final)+23-5-20+(logos).pdf [Accessed May 26, 2020].
  • 27. Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. Coronavirus Disease 2019 (COVID-19): People with Certain Medical Conditions. Available at: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html [Accessed August 30, 2020].
  • 28. Cunningham JW, Vaduganathan M, Claggett BL, Jering KS, Bhatt AS, Rosenthal N, et al. Clinical Outcomes in Young US Adults Hospitalized With COVID-19. JAMA Intern Med 2020. [Epub ahead of print]
  • 29. Martins-Chaves RR, Gomes CC, Gomez RS. Immunocompromised patients and coronavirus disease 2019: a review and recommendations for dental health care. Braz Oral Res 2020; 34: e048.
  • 30. Kocak B, Arpali E, Akyollu B, Yelken B, Tekin S, Kanbay M, et al. A Case Report of Oligosymptomatic Kidney Transplant Patients with COVID-19: Do They Pose a Risk to Other Recipients? Transplant Proc 2020. [Epub ahead of print].
  • 31. Ahmed N, Maqsood A, Abduljabbar T, Vohra F. Tobacco Smoking a Potential Risk Factor in Transmission of COVID-19 Infection. Pak J Med Sci 2020; 36(COVID19-S4): S104-S107.
  • 32. World Health Organization (WHO), Geneva, Switzerland. Q&A: Tobacco and COVID-19. Available at: https://www.who.int/news-room/q-a-detail/q-a-on-tobacco-and-covid-19 [Accessed September 18, 2020].
  • 33. Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol 2020; 20(7): 442-7.
  • 34. Takahashi T, Wong P, Ellingson M, Lucas C, Klein J, Israelow B, et al. Sex differences in immune responses to SARS-CoV-2 that underlie disease outcomes. medRxiv 2020; 2020.06.06.20123414. Preprint.
  • 35. Chen Z, John Wherry E. T cell responses in patients with COVID-19. Nat Rev Immunol 2020; 20(9): 529-36.
  • 36. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr Pulmonol 2020; 55(5): 1169‐74.
  • 37. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z et al. Epidemiology of COVID-19 Among Children in China. Pediatrics 2020; 145(6): e20200702.
  • 38. Choi SH, Kim HW, Kang JM, Kim DH, Cho EY. Epidemiology and clinical features of coronavirus disease 2019 in children. Clin Exp Pediatr 2020; 63(4): 125‐32.
  • 39. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41(2): 145-51.
  • 40. Society of Pediatrics, Chinese Medical Association; Editorial Board, Chinese Journal of Pediatrics. Recommendations for the diagnosis, prevention and control of the 2019 novel coronavirus infection in children (first interim edition). Zhonghua Er Ke Za Zhi 2020; 58(3): 169-74.
  • 41. Zimmermann P, Curtis N. COVID-19 in Children, Pregnancy and Neonates: A Review of Epidemiologic and Clinical Features. Pediatr Infect Dis J 2020; 39(6): 469-77.
  • 42. Şahiner F. Current Approaches in the Diagnosis and Management of Congenital Cytomegalovirus Infections and the Situation in Turkey. Mikrobiyol Bul 2020; 54(1): 171-90.
  • 43. Republic of Turkey Ministery of Health, Ankara, Turkey. COVID-19 Haftalık Durum Raporu 24/08/2020 - 30/08/2020 Türkiye. Available at: https://covid19.saglik.gov.tr/Eklenti/38609/0/covid-19-haftalik-durum-raporu---35-haftapdf.pdf?_tag1=49A327CBDFA8BDB90BB94DB427B6D677518AAF42 [Accessed September 01, 2020].
  • 44. Kim SE, Jeong HS, Yu Y, Shin SU, Kim S, Oh TH, et al. Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients. Int J Infect Dis 2020; 95: 441-3.
  • 45. Lee S, Kim T, Lee E, Lee C, Kim H, Rhee H, et al. Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea. JAMA Intern Med 2020; e203862.
  • 46. Kimball A, Hatfield KM, Arons M, James A, Taylor J, Spicer K, et al. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility - King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep 2020; 69(13): 377-81.
  • 47. Wu J, Huang Y, Tu C, Bi C, Chen Z, Luo L, et al. Household Transmission of SARS-CoV-2, Zhuhai, China, 2020. Clin Infect Dis 2020; pii: ciaa557. Online ahead of print.
  • 48. Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020; 26(8): 1200-4.
  • 49. Şahiner F. Can Facial Masking Slow Down the Spread of SARS-CoV-2 by a Variolation-like Effect?. J Mol Virol Immunol 2020; 1(2): 19-23.
  • 50. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
  • 51. Zhou Q, Gao Y, Wang H, Liu R, Du P, Wang X, et al. Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Ann Transl Med 2020; 8(10): 629.
  • 52. Wang J, Feng H, Zhang S, Ni Z, Ni L, Chen Y, et al. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital. Int J Infect Dis 2020; 94: 103-6.
  • 53. Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020; 582(7813): 557-60.
  • 54. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV. N Engl J Med 2020; 382(16): 1564-7.
  • 55. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible?. Lancet Gastroenterol Hepatol 2020; 5(4): 335-7.
  • 56. Ho AS, Sung JJ, Chan-Yeung M. An outbreak of severe acute respiratory syndrome among hospital workers in a community hospital in Hong Kong. Ann Intern Med 2003; 139(7): 564‐7.
  • 57. Lo IL, Lio CF, Cheong HH, Lei CI, Cheong TH, Zhong X, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int J Biol Sci 2020; 16(10): 1698‐707.
  • 58. Wang X, Ferro EG, Zhou G, Hashimoto D, Bhatt DL. Association Between Universal Masking in a Health Care System and SARS-CoV-2 Positivity Among Health Care Workers. JAMA 2020; 324(7): 703-4.
  • 59. Lim PL, Kurup A, Gopalakrishna G, Chan KP, Wong CW, Ng LC, et al. Laboratory-acquired severe acute respiratory syndrome. N Engl J Med 2004; 350(17): 1740-5.
  • 60. Dewar R, Baunoch D, Wojno K, Parkash V, Khosravi-Far R. Viral transportation in COVID-19 pandemic: Inactivated virus transportation should be implemented for safe transportation and handling at diagnostics laboratories. Arch Pathol Lab Med 2020; 144(8): 916-7.
  • 61. Wang K, Zhu X, Xu J. Laboratory Biosafety Considerations of SARS-CoV-2 at Biosafety Level 2. Health Secur 2020; 18(3): 232-6.
  • 62. Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Coronavirus Disease 2019 (COVID-19). Available at: https://www.cdc.gov/coronavirus/2019-ncov/lab/lab-biosafety-guidelines.html [Accessed August 29, 2020].
  • 63. World Health Organization (WHO), Geneva, Switzerland. Laboratory biorisk management for laboratories handling human specimens suspected or confirmed to contain novel coronavirus: Interim recommendations. Available at: https://www.who.int/csr/disease/coronavirus_infections/Biosafety_InterimRecommendations_NovelCoronavirus_19Feb13.pdf?ua=1 [Accessed June 18, 2020].
  • 64. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 2014; 370(26): 2499-505.
  • 65. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
  • 66. Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biol 2020; 30(7): 1346-51.e2.
  • 67. Gollakner R, Capua I. Is COVID-19 the first pandemic that evolves into a panzootic?. Vet Ital 2020; 56(1): 7‐8.
  • 68. Halfmann PJ, Hatta M, Chiba S, Chiba S, Maemura T, Fan S, et al. Transmission of SARS-CoV-2 in Domestic Cats. N Engl J Med 2020; 383(6): 592-4.
  • 69. Leroy EM, Ar Gouilh M, Brugère-Picoux J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health 2020; 100133.
  • 70. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020; 368(6494): 1016-20.
  • 71. Zhang Q, Zhang H, Huang K, Yang Y, Hui X, Gao J, et al. SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. bioRxiv 2020.04.01.021196.
  • 72. Gryseels S, De Bruyn L, Gyselings R, Calvignac-Spencer S, Leendertz F, Leirs H. Risk of Human-to-Wildlife Transmission of SARS-CoV-2. Preprints 2020; 2020050141.
  • 73. Kim YI, Kim SG, Kim SM, Kim EH, Park SJ, Yu KM, et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020; 27(5): 704-9.e2.
  • 74. Zhang Q, Zhang H, Gao J, et al. A serological survey of SARS-CoV-2 in cat in Wuhan [published online ahead of print, 2020 Sep 1]. Emerg Microbes Infect 2020; 1-16. Online ahead of print.
  • 75. Dowell SF, Ho MS. Seasonality of infectious diseases and severe acute respiratory syndrome-what we don't know can hurt us. Lancet Infect Dis 2004; 4(11): 704‐8.
  • 76. Monto AS, DeJonge P, Callear AP, Bazzi LA, Capriola S, Malosh RE, et al. Coronavirus occurrence and transmission over 8 years in the HIVE cohort of households in Michigan. J Infect Dis 2020; 222(1): 9-16.
  • 77. Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 2010; 48(8):2940-7.
  • 78. Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, Humidity and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN 2020; 3550308. Preprint.
  • 79. Czerwiński M. Blood groups - minuses and pluses. Do the blood group antigens protect us from infectious diseases?. Postepy Hig Med Dosw 2015; 69: 703-22.
  • 80. Batool Z, Durrani SH, Tariq S. Association Of Abo And Rh Blood Group Types To Hepatitis B, Hepatitis C, Hiv And Syphilis Infection, A Five Year' Experience In Healthy Blood Donors In A Tertiary Care Hospital. J Ayub Med Coll Abbottabad 2017; 29(1): 90‐2.
  • 81. Cheng Y, Cheng G, Chui CH, Lau FY, Chan PKS, Margaret HLNg, et al. ABO blood group and susceptibility to severe acute respiratory syndrome JAMA 2005; 293(12): 1450-1.
  • 82. Zhao J, Yang Y, Huang HP, Li D, Gu DF, Lu XF, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. medRxiv 2020.03.11.20031096.
  • 83. Gallian P, Pastorino B, Morel P, Chiaroni J, Ninove L, de Lamballerie X. Lower prevalence of antibodies neutralizing SARS-CoV-2 in group O French blood donors. Antiviral Res 2020; 181: 104880.
  • 84. Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin Chim Acta 2020; 509: 220-3.
  • 85. Fan Q, Zhang W, Li B, Li DJ, Zhang J, Zhao F. Association Between ABO Blood Group System and COVID-19 Susceptibility in Wuhan. Front Cell Infect Microbiol 2020; 10: 404.
  • 86. Xu K, Chen Y, Yuan J, Yi P, Ding C, Wu W, et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. Clin Infect Dis 2020; 71(15): 799-806.
  • 87. Xu D, Zhang Z, Jin L, Chu F, Mao Y, Wang H, et al. Persistent shedding of viable SARS-CoV in urine and stool of SARS patients during the convalescent phase. Eur J Clin Microbiol Infect Dis 2005; 24(3): 165‐71.
  • 88. Wan WY, Lim SH, Seng EH. Cross-reaction of sera from COVID-19 patients with SARS-CoV assays. medRxiv 2020. 03.17.20034454.
  • 89. Wu LP, Wang NC, Chang YH, Tian XY, Na DY, Zhang LY, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis 2007; 13(10): 1562‐4.
  • 90. Cohen J. COVID-19 shot protects monkeys. Science 2020; 368 (6490): 456-7.
  • 91. Gümral R, Şahiner F. The Use of Convalescent Plasma and Hyperimmunoglobulin in SARS-CoV-2 Infections. J Mol Virol Immunol 2020; 1(1): 30-42.
  • 92. To KK, Hung IF, Ip JD, Chu AW, Chan WM, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis 2020; ciaa1275. Online ahead of print.
  • 93. Zhu F, Cao Y, Xu S, Zhou M. Co-infection of SARS-CoV-2 and HIV in a patient in Wuhan city, China. J Med Virol 2020; 92(6): 529-30.
  • 94. Wei J, Zhao J, Han M, Meng F, Zhou J. SARS-CoV-2 infection in immunocompromised patients: humoral versus cell-mediated immunity. J Immunother Cancer 2020; 8(2): e000862.
  • 95. Yu J, Ouyang W, Chua MLK, Xie C. SARS-CoV-2 Transmission in Patients With Cancer at a Tertiary Care Hospital in Wuhan, China. JAMA Oncol 2020; 6(7): 1108-10.
  • 96. Zhu L, Xu X, Ma K, Yang J, Guan H, Chen S, et al. Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am J Transplant 2020; 20(7): 1859-63.
  • 97. Minotti C, Tirelli F, Barbieri E, Giaquinto C, Donà D. How is immunosuppressive status affecting children and adults in SARS-CoV-2 infection? A systematic review. J Infect 2020; 81(1): e61-e66.
  • 98. Anadolu Agency, Ankara, Turkey. China confirms its first COVID-19 vaccine patent. Available at: https://www.aa.com.tr/en/asia-pacific/china-confirms-its-first-covid-19-vaccine-patent/1944015 [Accessed August 17, 2020].
  • 99. World Health Organization (WHO), Geneva, Switzerland. Draft landscape of COVID-19 candidate vaccines. Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines [Accessed April 18, 2020].
  • 100. Thanh Le T, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Savilleet M, al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020; 19(5): 305-6.
  • 101. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Coronavirus (COVID-19) Update: FDA Takes Action to Help Facilitate Timely Development of Safe, Effective COVID-19 Vaccines. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-takes-action-help-facilitate-timely-development-safe-effective-covid [Accessed August 29, 2020].
  • 102. Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, et al. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell 2020; 181(5): 969-77.
  • 103. Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 2020; 117(28): 16587-95.
  • 104. Gandhi M, Rutherford GW. Facial Masking for Covid-19 - Potential for "Variolation" as We Await a Vaccine. N Engl J Med 2020; 10.1056/NEJMp2026913.
  • 105. Rabenau HF, Kampf G, Cinatl J, Doerr HW. Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect 2005; 61(2): 107-11.
  • 106. International Committee on Taxonomy of Viruses, Washington, DC. ICTV reports; Coronaviridae. Available at: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/222/coronaviridae [Accessed March 30, 2020].
  • 107. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020; 382(12): 1177‐9.
  • 108. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
  • 109. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020; 181(4): 894-904.e9.
  • 110. Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol 2010; 76(9): 2712-7.
  • 111. Chan KH, Peiris JS, Lam SY, Poon LL, Yuen KY, Seto WH. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv Viro 2011; 2011: 734690.
  • 112. Yurkovetskiy L, Pascal KE, Tompkins-Tinch C, Nyalile T, Wang Y, Baum A, et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. bioRxiv 2020.07.04.187757. [Preprint]
  • 113. Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol 2020; 92(6): 667-74.
  • 114. Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020; 7(6): 1012-23.
  • 115. Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol 2020; 92(6): 584-88.
  • 116. Callaway E. The coronavirus is mutating - does it matter?. Nature. 2020; 585(7824): 174-7.