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1 INTRODUCTION
A common type of analysis performed by scientists in various
disciplines, aims to reveal whether two binary classifications of
a population (which divide it in two mutually exclusive classes:
the positive and the negative one) are associated with each other.
For instance, in medicine it is crucial to investigate if a biological
gender-based classification of humans can be associated with their
risk to develop a particular disease; in mechanical engineering, it is
interesting to reveal if a particular type of vehicle is more prone
to engine failures. Similar examples can be easily found in many
other scientific fields.
Using this as motivation, several statistical tests have been devel-
oped, that measure the association between two binary classifica-
tions, usually producing a measure that quantifies the strength of
the association between the classifications (called p-value). In fact,
often, the objective is to find whether a set of “query” classifications
(of arbitrary size) is associated with one or more classifications
in a fixed set of “ground” classifications. Essentially, this translates
into a series of association tests that need to be performed. The
most widely-used association test is Fisher’s exact test [11]. When
examining a query and a ground classification, the test takes into
consideration the number of items that belong in the positive class
of both classifications (i.e., their overlap) to decide whether they
are associated or not. One of the assumptions made by this test is
that the expected overlap between two independent classifications
follows the hypergeomentric distribution. However, it has been re-
cently shown that in various cases, this is not a valid assumption [7].
In these cases, applying Fisher’s exact test may result in producing
erroneous findings.
In these cases, scientists prefer to utilize randomization tests, which
exploit a very large number of randomly generated query clas-
sifications in an attempt to estimate the real distribution of the
expected overlap. The side-effect is that these tests require a large
number of computations to be performed, resulting in significantly
larger execution times. Since the performance of the association
test is very important for some applications, methods to accelerate
randomization tests attracted interest recently [22].
In this work, we introduce novel, indexing-based approaches that
exploit frequently occurring patterns in the classifications of inter-
est, in the span of a series of randomization tests to significantly
accelerate their execution. More specifically:

• We introduce two novel indices to facilitate the efficient
execution of randomization tests, the Frequent Itemset In-
dex (FII) and the Significance Level Index (SLI). The former
captures all overlaps that exist between the ground classifi-
cations, while the latter captures the minimum overlap that
a query classification should have to be a candidate for sig-
nificant association with each of the ground classifications.

• We introduce a novel approach that exploits the FII index to
avoid redundant computations occurring due to the overlaps
that exist between the ground classifications.

• We also introduce a second approach that combines both
indices (FII and SLI) to create an approach that can be used
to eliminate statistically insignificant associations and vastly
reduce the number of computations required.

• We conduct comprehensive experiments showing that our
approaches introduce significant speedup; more specifically,
the approach combining both indices outperforms the state-
of-the-art by an order of magnitude (see Section 4).

• We provide open-source implementations of all described
approaches.

2 BACKGROUND
2.1 Association testing for binary

classifications
The binary classification of a given population is the result of classi-
fying its items in two classes which are mutually exclusive. Usually,
we refer to the one class as the “positive” and to the other as the
“negative”. For instance, a possible binary classification for the items
in a given bacteria population could be based on their pathogenicity
for humans; based on this classification, there are two classes of
bacteria, the pathogenic (positive class) and the non-pathogenic
ones (negative class). Knowing all the items in a population, it is
possible to use the set of items labeled as positive by a binary clas-
sification to represent it as a whole. In the remainder we adopt this
convention and we use capital letters (e.g., 𝐴, 𝐵) to denote these
item sets/classifications.
Given a population of items, investigating whether two different
binary classifications are associated with each other, is a problem
of great interest in many scientific applications (see also Section 1).
Many statistical approaches that examine the significance of the
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association between two binary classifications based on a gathered
sample from the population have been proposed in the literature
(e.g., chi-squared tests [2], the Cochran–Mantel–Haenszel test [1],
etc). In the remainder of this paper, we refer to them as association
testing methods.
Themost popular of them, Fisher’s exact test [11], examines the num-
ber of items that belong to the positive class of both classifications
(i.e., their overlap) to decide whether these classifications are asso-
ciated or not. In this context, it assumes that the expected overlap
between two independent classifications follows the hypergeomet-
ric distribution. Then, based on this assumption, the probability
that an observed overlap between two binary classifications could
have been observed by pure chance if they were independent (null
hypothesis), can be used to calculate an indicator (p-value) that can
help to decide if the two classifications are associated or not.
Often, during investigating associations of different classifications,
we have a fixed set of 𝑘 classifications of interest (let them be
the ground classifications, denoted as 𝐵1, . . . , 𝐵𝑘 ) that we want to
examine their association with a (maybe infinite) “family” A of
related classifications (let them be the query classifications, denoted
as𝐴1, 𝐴2, · · · ∈ A). The members of the family (i.e., the query classi-
fications) usually share a similar mechanism that classifies objects
of the population. For example, one possible binary classification
for genes could be based on whether they are targeted (blocked) or
not, by a particular set of biomolecules called microRNAs [7]. By
selecting different sets of microRNAs we can determine different
query classifications of this type. The classification mechanism be-
hind them is similar to an extent (e.g., in regard to the principles
of how microRNA groups target particular genes). Finally, exam-
ining the association of members of this family with the ground
classifications of interest (e.g., genes being involved in particular
biological processes or not) is of great interest and can be done
using the aforementioned association testing methods.

2.2 Randomization tests
Although Fisher’s exact test is very widely used and has been very
helpful in a wide range of applications, it has been shown than
sometimes the expected overlap between the two classifications
does not follow the hypergeometric distribution making the test
unsuitable. This could be relevant to the fact that the one of the
classifications under investigation belongs to a classification fam-
ily (see also Section 2.1) something that modifies, among others,
the way population items are being classified. For example, in [7]
the authors, study this effect in microRNA functional enrichment
analysis, which is used to indicate whether a group of biomolecules
(microRNAs) can affect specific biological processes. The authors
used a ground truth (formed based on laboratory experiments) to
show that using Fisher’s exact test in this context could result in
reporting known, strong associations as weak or the opposite.
Problems like this one provided the motivation for the introduc-
tion of randomization tests. These are statistical methods that, in
the context described here, instead of assuming that the expected
overlap of a random query classification 𝐴 ∈ A with another, inde-
pendent ground classification 𝐵 follows the hypergeometric distri-
bution, they estimate an empirical distribution based on calculating
the exact overlap that 𝑛 randomly selected query classifications

𝐴1, . . . , 𝐴𝑛 ∈ A have with 𝐵, for very large numbers of 𝑛. According
to that, when the association between two classifications𝐴 ∈ A and
𝐵 is being investigated, an empirical p-value is calculated based on
the proportion of random classifications (𝐴1, . . . , 𝐴𝑛) that present a
larger overlap with 𝐵 than the calculated overlap between 𝐴 and 𝐵.
It should be noted that each randomization set provides its own
definition of what consists an overlap. For example, in [7], the one-
sided overlap between two classifications (let them be 𝐴 and 𝐵) is
used, that is defined as follows:

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝐴, 𝐵) = 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐴 ∩ 𝐵)
𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐴)

For the remainder of this paper, we assume that the same definition
of overlap is used. Under this assumption, based on the previous
discussion, the empirical p-value could be formalised as follows:

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
𝑠𝑖𝑧𝑒𝑜 𝑓 ({𝐴 𝑗 : 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝐴 𝑗 , 𝐵) ≥ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝐴, 𝐵)})

𝑛

Figure 1 illustrates the process of a such randomisation test.

2.3 Performance issues of randomization tests
Randomization test tend to be intensive, in regard to the computa-
tional resources required (CPU, RAM, execution time), especially
when a very large 𝑛 is selected (e.g., 𝑛 ≥ 1𝑀). Selecting values of
such magnitude for 𝑛 is very common since, the larger the 𝑛 is, the
higher the accuracy of the produced empirical p-value will be. As a
result, randomization tests tend to have significant execution times.
To make matters worse, as already mentioned (see Section 2.1), in
practice, researchers are interested to examine the association of
a query classification 𝐴 ∈ A with a large set of different ground
classifications 𝐵1, . . . , 𝐵𝑘 (with 𝑘 being a integer significantly larger
than 1). It is evident that, this results in even larger execution times.
Consequently, methods that could improve the performance of
randomization tests received attention recently [22].

3 EFFICIENT CALCULATION OF EMPIRICAL
P-VALUES

In this section we present two novel approaches for the efficient
calculation of empirical p-values based on randomization tests. The
first one (described in Section 3.1) exploits the fact that several
sets of items (itemsets) appear in many of the ground classifica-
tions (𝐵1, . . . , 𝐵𝑘 ), resulting in redundant computations during the
randomization test. The approach avoids these redundant com-
putations using an index structure that identifies the overlaps of
the ground classifications. The second approach (described in Sec-
tion 3.2) is just an extension of the first one that allows an even
larger acceleration based on a second index that captures the mini-
mum overlap a query classification should have with each of the
ground classifications in order to be a candidate for having signifi-
cant association with them.

3.1 The Frequent Itemset Index (FII) Approach
3.1.1 Basic approach. Calculating the (one-sided) overlap between
two classifications is a core task performed multiple times during a
randomization test (see Section 2.3). This task is based on applying
the intersection operation on the corresponding sets. As a result,
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Figure 1: Association randomization test using one-sided overlap

accelerating the intersection operations involved is expected to
achieve significant speedups in the performance of randomization
tests.
Currently, the best state-of-the-art approach for this is the one
described in [22]. In brief, the positive items of each random query
classification𝐴 𝑗 , 𝑗 = 1, . . . , 𝑛 are kept as set bits in a bitset, that rep-
resents each element in the population with a bit; the positive items
of each ground classification 𝐵𝑖 are kept in the form of lists of gene
IDs (each gene ID is an integer that corresponds to the respective
position of the gene in the bitsets). During the randomization test,
for each ground classification 𝐵𝑖 , its gene IDs are used to examine
if the corresponding bit in the bitset of each of the query classifica-
tions 𝐴 𝑗 is set (an operation called bit-probing). Based on that, an
overlap counter that allows the calculation of the corresponding
overlap is being updated.
However, it can be shown that the ground classifications contain
overlapping items. In fact, some itemsets are very frequent, appear-
ing in many ground classifications 𝐵𝑖 , 𝑖 = 1, . . . , 𝑘 . This means that
during the execution of randomization tests, a large number of
redundant bit-probing operations are taking place. To alleviate this
issue, we could identify those frequent itemsets, compute their over-
lap with each of the query classifications 𝐴 𝑗 beforehand, and store
the results in a proper, easily accessible structure with counters.
Then, each time a redundant calculation is about to happen (when
the overlap of a query classification 𝐴 𝑗 with a ground classification
𝐵𝑖 that contains a frequent itemset is required), instead of perform-
ing the calculation, a less expensive combination of an index probe
and a subsequent addition to the corresponding counter will take
place.
It should be noted that, in general, the FII approach comprises
frequent itemsets of any size. However, in some cases where the
fast creation of the FII index is crucial, a limited version of the

FII approach that is based only on singular frequent itemsets (i.e.,
itemsets of size 1) can be used.

3.1.2 The index. Based on the previous discussion, we introduce
the Frequent Itemset Index (FII). This index is designed to store all
frequent itemsets among the ground classifications 𝐵𝑖 along with
the counters that store the size of their overlap with each of the
random query classifications 𝐴 𝑗 . Figure 3 illustrates this index. It
consists of the following parts:

• Inverted Index. The inverted index containing frequent item-
set definitions, as well as relations between the frequent
itemsets and the ground classifications 𝐵𝑖 (i.e., which fre-
quent itemsets appear in each ground classification). This
part of the index can be calculated only once for each dataset
and can be saved to disk to be used in subsequent tests in-
volving it.

• Array of counters. A hybrid two-dimensional array of coun-
ters that contain the size of the intersection between all fre-
quent itemsets and all random query classifications 𝐴 𝑗 . This
array is hybrid in the sense that it contains rows both of char
and integer type. In cases where the size of the intersection
is potentially smaller than 255we use a character row or else
we use an integer row. This way, we can reduce the memory
footprint of the array by using a smaller data type, in terms
of memory space, where appropriate. Finally, it is created
on-the-fly, since it depends on the query classifications 𝐴 𝑗 ,
which are computed during the analysis.

To create the index, we need to process the itemsets of all ground
classifications 𝐵𝑖 to identify all their parts that occur frequently
(i.e., in more than one 𝐵𝑖 ). Then, we need to transform them all so
that they are expressed as sets containing both regular items and
frequent itemsets (those identified from the preprocessing step).
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The latter task is not trivial since, often, each 𝐵𝑖 can be expressed in
many different ways, each using different combinations of (singular
or longer) frequent itemsets. Long frequent itemsets are, in general,
preferable since they will replace a large number of redundant com-
putations with only one index probe per element and one addition.
The FII creation process should attempt to utilise characteristics
like these to achieve better performance. In the following sections
we elaborate on relevant implementation details.

3.1.3 Frequent Itemsets Identification. Regarding the first step (fre-
quent itemsets identification), executing the Apriori algorithm [4]
(with threshold 𝑠𝑢𝑝_𝑡ℎ𝑟 = 2) on the itemsets of all ground classifi-
cations 𝐵𝑖 can be used to perform this task. However, using Apriori
with such a low support threshold is very computationally intensive.
In particular, using Christian Borgelt’s implementation [8], we tried
to produce the maximal itemsets with support threshold≥ 2 for
the datasets in Section 4.1, which contain 15K-25K classifications,
which we used as input transactions to the algorithm. However,
after one hour into the execution of the program, we were forced
to kill it, because it was using more than 100 GB of RAM.
To alleviate this issue, we introduce an alternative approach: let 𝐹
be a frequent itemset that would have been produced by executing
Apriori with 𝑠𝑢𝑝_𝑡ℎ𝑟𝑒𝑠 = 2. Essentially, 𝐹 would fall under one of
the following cases:

• 𝐹 is subset of two ground classifications (𝐹 ⊆ 𝐵1 & 𝐹 ⊆ 𝐵2).
In this case, 𝐹 = 𝐵1 ∩ 𝐵2 or 𝐹 ⊂ 𝐵1 ∩ 𝐵2. Thus, any frequent
itemset in this case will be dominated by 𝐵1∩𝐵2 because our
approach requires the largest of the itemsets possible. Thus,
using only 𝐵1 ∩ 𝐵2 for the classification transformation (see
Section 3.1.4) of both 𝐵1 and 𝐵2 is an adequate solution for
our approach.

• 𝐹 is subset of more than two ground classifications. Consider
that 𝐹 appears in 3 classifications 𝐵1, 𝐵2, 𝐵3 (but what is said
here can be easily generalized for larger values). It holds that
𝐵1 ∩ 𝐵2 ∩ 𝐵3 would always be smaller than any of 𝐵1 ∩ 𝐵2,
𝐵1 ∩ 𝐵3, and 𝐵2 ∩ 𝐵3 (see also Venn diagrams in Figure 2).
Thus, using 𝐵1∩𝐵2, 𝐵1∩𝐵3, and 𝐵2∩𝐵3 for the classification
transformation of both 𝐵1, 𝐵2, and 𝐵3 is also an adequate
solution for our approach.

It follows then, that we only need to calculate the intersections
between all ground classification pairs and this eliminates a large
number of intersection operations, making the complexity of this
algorithm 𝑂 (𝑘2). Hence, for each ground classification 𝐵𝑖 we need
to consider only the largest itemsets produced from its intersection
with all of the other ground classifications. This results to a signifi-
cantly reduced number of operations and, consequently, to better
execution times from the creation of the FII.

3.1.4 Ground Classification Transformation. After we have pro-
cured all frequent itemsets, we need to decide which frequent item-
sets better “cover” each ground classification 𝐵𝑖 . Based on the deci-
sion made, each 𝐵𝑖 will be transformed to an equivalent set 𝐵′

𝑖
that

will contain both single items and some of the identified frequent
itemsets.
As mentioned, ideally, for each ground classification 𝐵𝑖 , large fre-
quent itemsets should be selected to be included in 𝐵′

𝑖
, to minimize

the number of addition operations performed. This is relevant to
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Figure 2: Venn diagrams showing the overlap between
transactions

the set cover problem, which is a very difficult problem, being one
of Karp’s 21 NP-complete problems [14]. However, a greedy ap-
proach that can reveal a sub-optimal solution to our problem for
each ground classification 𝐵𝑖 , is the following:

(1) Sort all frequent itemsets by descending size in a list (F ).
(2) Add the largest itemset 𝐹𝑚𝑎𝑥 , for which 𝐹𝑚𝑎𝑥 ⊆ 𝐵𝑖 , to 𝐵′

𝑖
(initially empty).

(3) For the rest of the itemsets 𝐹𝑝 ∈ F , if 𝐹𝑝 ⊆ 𝐵𝑖 and none of
its items is contained in any of the current itemsets in 𝐵′

𝑖
,

then 𝐹𝑝 is also added to 𝐵′
𝑖

(4) Finally add all singular frequent items of 𝐵𝑖 that are not
included in any of the current itemsets of 𝐵′

𝑖
to 𝐵′

𝑖
.

It is worth noting here, that by following this approach, if a frequent
itemset is dominant (i.e., it is frequent and none of its supersets
are frequent) and it is selected as a cover, then all of its subsets
(which are also frequent) will be discarded, since their elements have
already been selected. Thus, we only need to consider dominant
frequent itemsets as potential covers.

3.1.5 Extra implementation details. We have implemented FII in
such a way that it takes advantage of Single Instruction Multiple
Data (SIMD) CPU instructions during counter additions. SIMD
instructions can perform simultaneous mathematical operations on
memory positions that exist alongside each other (i.e. array) inside
a memory word. For example, on an 128-bit register, 16 elements
of an array of type char or 4 elements of type int can be added
simultaneously to another char or int array respectively. This
approach resulted in improved performance for the FII.
Another interesting implementation detail is the following. The
number of frequent itemsets to be used by the FII index can often
become very large resulting in a very large array of counters. In
cases where it is essential to reduce the memory footprint of the
program, one option is to use 𝑠𝑢𝑝_𝑡ℎ𝑟 > 2. In order to do that, we
first calculate the support for each of the itemsets produced by our
approach for 𝑠𝑢𝑝_𝑡ℎ𝑟 = 2; then we discard all itemsets that have
a 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 < 𝑠𝑢𝑝_𝑡ℎ𝑟 and use the rest. This means that the greater
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the value of 𝑠𝑢𝑝_𝑡ℎ𝑟 is, the smaller the memory footprint will be.
Of course, as a side-effect, the performance is expected to degrade.
In the experimental section, we investigate the effect of greater
𝑠𝑢𝑝_𝑡ℎ𝑟 values both to the memory footprint and to the execution
time of the FII approach (see Section 4.3).

3.1.6 A toy example. The following example outlines how the FII
is created and used to calculate the intersection size:

Example 3.1. Let 𝐵1 a ground classification containing items 1, 5
and 6, 𝐵2 another ground classification containing items 1, 5 and 7
and finally, 𝐵3 containing items 3, 4 and 7. Also, let 𝐴1 be a query
classification represented as a bitset, containing items 1, 2, 5, 8 and
10 by having the appropriate bits set to 1. The apriori algorithm
with 𝐵1, 𝐵2 and 𝐵3 as transactions and support threshold 2 pro-
duces two frequent itemsets: 𝐹𝑟𝑒𝑞1 containing elements 1 and 5 and
𝐹𝑟𝑒𝑞2 containing item 7. The contents of 𝐹𝑟𝑒𝑞1 and 𝐹𝑟𝑒𝑞2 are re-
moved from 𝐵1, 𝐵2 and 𝐵3. Furthermore relations, which are stored
in an inverted index, are also created: 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 [𝐵1] = {𝐹𝑟𝑒𝑞1},
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 [𝐵2] = {𝐹𝑟𝑒𝑞1, 𝐹𝑟𝑒𝑞2}, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 [𝐵3] = {𝐹𝑟𝑒𝑞2}. More-
over, two counters which contain the size of the intersection be-
tween 𝐴1 and 𝐹𝑟𝑒𝑞1 as well as the intersection between 𝐴1 and
𝐹𝑟𝑒𝑞2 respectively are created, by probing 𝐴1 at the appropriate
positions for 1, 5 and 7.
To calculate the size of the intersection between𝐴1 and𝐵1, we probe
𝐴1 in position 6 and add the counter for 𝐹𝑟𝑒𝑞1 to the intersection
size. However, for 𝐵2 we only need to add the counters for 𝐹𝑟𝑒𝑞1
and 𝐹𝑟𝑒𝑞2 and finally, for 𝐵3 we add the counter for 𝐹𝑟𝑒𝑞2 and
probe 𝐴1 two times in positions 3 and 4. Finally, the number of
probes we perform without the FII is 9, while we probe 𝐴1 only 6
times in total by using the index.
Figure 4 depicts the index described above in regard to the previous
example.

3.2 The Significance Level Index (SLI)
Approach

3.2.1 Basic approach. During an association test, all associations
having a p-value equal or smaller than a predefined threshold (usu-
ally 0.05) are considered to be strong and are those to be reported.
Consider, for a while, that we are interested in performing a ran-
domization test to examine if a given query classification 𝐴 ∈ A is
significantly associated with a particular ground classification 𝐵. In
the context of the randomization tests described in Section 2.2, an
empirical p-value smaller or equal to 0.05 essentially means that the
overlap of the query classification 𝐴 with the ground classification
𝐵 is so large that it will be among the top 5% of overlaps observed
for all random query classifications 𝐴 𝑗 .
It is evident that the lowest overlap in the top 5% of overlaps be-
tween ground classification 𝐵 and all query classifications 𝐴 𝑗 can
be used to define a threshold for the lowest possible overlap that
𝐴 should have in order to be significantly associated with 𝐵. For
the remainder of the manuscript we will refer to this threshold as
the overlap threshold (𝑜𝑣_𝑡ℎ𝑟 ). The intuition behind the Significant
Level Index (SLI) approach is to build an index that keeps these
overlap thresholds for all ground classifications of interest 𝐵𝑖 . Then,
by simply calculating the overlap of query classification 𝐴 with
ground classification 𝐵𝑖 and comparing it with the overlap thresh-
old we will be able to know if the p-value of 𝐴 will be adequate to
characterize the association of 𝐴 with 𝐵𝑖 as statistically significant.
The only problem with the previous approach is that each exe-
cution of the randomization test needs a new, on-the-fly created
set of random query classifications 𝐴1, . . . , 𝐴𝑛 ∈ A. This means
that the set of random query classifications to be used during the
analysis cannot be known beforehand. Instead of that, during a
pre-processing phase, we can create a similar set of random query
classifications 𝐴′

1, . . . , 𝐴
′
𝑛 ∈ A and then create the thresholds for all

ground classifications of interest 𝐵, based on them. This means that
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Figure 4: Example for the creation and use of the FII

the calculated overlap thresholds could be slightly different than
the exact thresholds that will be calculated for the final random-
ization tests. However, by definition, the randomized test assumes
that these sets simulate the actual empirical overlap distribution of
the data and, thus, we expect that the distribution will be similar
between two runs of the same experiment (given a large enough
number of random sets). This means that the SLI can be saved on
disk and used for multiple subsequent tests.
To alleviate this issue, we introduce a filtering approach: We first
calculate a slightly looser threshold for each ground classification
of interest 𝐵 (based on the top 𝑥% of classifications, where 𝑥 > 5)
and include this threshold in the SLI. Then, for each ground classifi-
cation of interest 𝐵𝑖 , we calculate the overlap of query classification
𝐴 with it and compare it with the corresponding overlap in the
SLI. For all ground classifications 𝐵𝑖 for which the overlap of 𝐴
was found to satisfy the threshold we perform the full random-
ization test, since these pairs correspond to candidate significant
associations. In fact, using SLI we can significantly filter out ground
classifications 𝐵𝑖 that do not have any chance to provide significant
results beforehand, resulting in significantly increased performance.
More details about this process could be found in Section 3.2.4.

3.2.2 The Index. The SLI comprises a list of float numbers, one
for each of ground classification of interest 𝐵. Each float number
represents the one-sided overlap significance level (i.e., overlap
threshold) that has been produced using a large number of random
query classifications 𝐴′

𝑖
. The list is then saved in a file, which can

be used for multiple subsequent tests. Figure 5 demonstrates an
example of the use of the SLI index.

Example 3.2. Given a query classification 𝐴 and ground classifica-
tions 𝐵1, 𝐵2, 𝐵3 and 𝐵4, we first calculate the overlap of𝐴 with each
of the 𝐵𝑖 . Then we compare these overlap values with the signifi-
cance overlap values in the SLI for each of the ground classifications
𝐵𝑖 and decide which of them are potentially significant associations

(𝐵2, 𝐵4). The rest (𝐵1 and 𝐵3 are marked as insignificant and no
p-values for them are produced. Then for 𝐵2 and 𝐵4 we run the full
randomization test and produce the respective p-values.

In order to create the SLI, we use the approach described in Sec-
tion 3.1 (FII) to calculate the overlaps between all query classifi-
cations 𝐴 𝑗 and all ground classifications 𝐵𝑖 . Then, for each 𝐵𝑖 the
list of overlaps is sorted and the overlap significance threshold is
extracted based on the top 𝑥 ∗ 100% of overlaps (for a discussion on
the proper selection of 𝑥 , see Section 3.2.3), where 𝑥 is the p-value
threshold of the SLI. Finally, the identifier of the ground classifi-
cation 𝐵𝑖 along with the one-sided overlap threshold is saved in a
file.

3.2.3 SLI significance threshold. One possible issue with using the
SLI is that, unless the p-value significance threshold 𝑥 is set to a high
enough value, the SLI might mark actually significant associations
between a query classification 𝐴 and ground classifications 𝐵𝑖 as
insignificant and discard them (false negatives). For example, if
𝑥 = 0.05 then the method is potentially approximate since the
randomization test is an approximation process and if the set of all
query classifications 𝐴𝑖 that were used for the experiment, changes
even slightly, then the SLI might produce false negatives.
On the other hand, if 𝑥 is set to too high a value, then we lose some
of the filtering power of the SLI because many insignificant associa-
tions can be marked as potentially significant (false positives). This
will lead to calculation of empirical p-values for them, increasing
the total execution time of the approach.
Given the fact that the one-sided overlap at the p-value significance
threshold 𝑥 is calculated using the same randomization test, it is
easy to see that each time we run the experiment, the 𝑜𝑣𝑡ℎ𝑟 at
𝑥 is expected to change, since the set of query classifications 𝐴 𝑗

changes. More specifically, let 𝑁 be the total number of all possible
randomized query classifications 𝐴 𝑗 and 𝑛 the number of query
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Figure 5: Example of the use of the SLI

classifications that have been selected for the randomization ex-
periment, while K is the number of query classifications that were
not picked for the experiment. Then in order for 𝑥 to have a devi-
ation of 𝑑𝑒𝑣 between re-runs of the same experiment, a different
set of query classifications must be selected for the re-run, namely
𝑘 = (( |𝑑𝑒𝑣 − 𝑥 |) ∗ 𝑛) different query classifications. Then, given a
deviation 𝑑𝑒𝑣 , we could use the hypergeometric distribution to find
the probability that 𝑘 different query classifications could be se-
lected when the experiment is repeated. However, as we mentioned
earlier (see the Background section), the intersection sizes and con-
sequently the one-sided overlaps do not follow the hypergeometric
distribution.
Thus, we propose an empirical approach to set the p-value signifi-
cance threshold based on the observed data. More specifically, we
can repeat a randomization test a number of times with the same
input. Then, for the p-values in the output of the multiple repeti-
tions we calculate the maximum standard deviation from the mean.
After that, we can use different inputs, repeat the experiments a
number of times and calculate the total maximum standard devia-
tion. Finally, we can arbitrarily set the significance threshold to a
value that is larger than the maximum standard deviation in order
to guarantee that the SLI will not mark significant associations
as insignificant. The effectiveness of this method is evaluated in
Section 4.4.

3.2.4 Calculating p-values using the SLI. In order to calculate p-
values using the SLI, we first calculate the overlap of query classifi-
cation𝐴with each of ground classifications 𝐵𝑖 . Then, we use the SLI
to compare these overlaps with the respective overlap thresholds
for all 𝐵𝑖 . If an overlap is above the significance overlap threshold,
we mark the association between query classification 𝐴 and the
respective ground classification 𝐵𝑖 as potentially significant. In the
case that the association is marked as insignificant, we also print
the p-value that corresponds to the overlap threshold.
After we have collected all potentially significant associations, we
use the FII version of our approach to calculate empirical p-values.
However, in this case, the index consists only of singular itemsets

with support≥ 2 and it is created on-the-fly. The reason we do not
re-use the FII that already exists from the creation of the SLI is that,
since a lot of associations between 𝐴 with ground classifications
𝐵𝑖 have been eliminated from the analysis by the use of the SLI, a
lot of itemsets that were frequent before (with support≥ 2) are not
frequent any more. Moreover, since the collection of potentially
significant associations changes based on the input query classifi-
cation 𝐴 and is calculated at run-time, we must also find frequent
itemsets on-the-fly. Since the execution of the Apriori algorithm
(or our approach) is computationally expensive, the speedup is not
expected to overcome the overhead of the index creation. On the
other hand, it is easy and fast to discover frequent singular itemsets
(support≥ 2) among the collection of ground classifications poten-
tially significantly associated with A using hash tables in𝑂 (𝑛) time
where n is the total number of significant associations. This FII
method is then used as before to eliminate duplicate probes and
calculate p-values.

4 EVALUATION
In this section we evaluate the performance of our method against
competitor methods using a real randomization experiment as use
case. In particular, we use the case of microRNA functional enrich-
ment analysis [7, 22], where we are interested to investigate the
association between genes targeted by a particular group of micro-
RNAs (query classification 𝐴) and genes involved in a particular
biological process or diseases (ground classification 𝐵). We have
selected this scenario for the experiments since (a) this is a known
example where Fisher’s exact test has been shown to be inade-
quate [7] and (b) from a previous work, we know there are relevant
open datasets that we could utilise. However, our approach can be
used in other domains that use the overlap-based randomization,
with very minor changes to the code.
All of the experiments were performed on a single CPU core on a
server with a Xeon E7- 4830 CPU and 256GB of RAM.
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4.1 Datasets
In experiments, we used three openly accessible life-sciences datasets
as ground classifications 𝐵𝑖 :

• Gene Ontology (GO) [6, 20]. This dataset contains three struc-
tured controlled vocabularies (ontologies) that categorize
genes according to their function. Each gene can belong to
multiple categories. The dataset used was retrieved from the
Ensembl Biomart [10] for version 84.

• DisGeNET [16]. This dataset was retrieved from DisGeNET,
which is one of the largest and comprehensive repositories of
human gene-disease associations. We used DisGeNET version
5 annotations.

• MeSH. This dataset maps genes to Medical Subject Head-
ings [17]. The gene mappings were retrieved from the REST
API of Gene2Mesh [3].

Regarding the query classifications 𝐴 𝑗 (miRNA-gene interactions)
we used the microT dataset, with an interaction score threshold
of 0.8, which we produced by using MR-microT [13] for Ensembl
version 84.

4.2 Performance of addition operations vs.
bit-probes

In this section, we describe the experiment we conducted to com-
pare the performance of bit-probes vs the one of addition operations.
This experiment is designed to show that the latter are more ef-
ficient in the context of the FII approach. We used bitsets 25, 000
bits long, since the universe of human genes has a size of about
25, 000. Also the bitsets we are using, are of three different densities:
sparse (100 bits set), medium (10, 000 bits set) and dense (20, 000 bits
set). We used these bitsets to calculate the size of the intersection
with bit-probing. We performed 10, 000 probes for 10, 000 different
bitsets in each setting and calculated the average amount of time
required.
On the other hand, we created arrays of numbers which have a
length of 10, 000. We designed the following two versions: one array
of characters, that can store numbers from 0 to 255 and one for an
array of integers, which can store numbers from 0 to 232 − 1, since
the FII uses both of these data types. Moreover, we created 10, 000
arrays for each data type and measured the total times required for
addition operations. It should be noted here, that we enabled SIMD
instructions for the addition operations, since they are also used by
the FII. Each experiment was repeated 100 times and the average
execution times per operation are shown in Table 1. It is easy to

Method Time (nsec)
bit-probing (sparse) 1.884
bit-probing (medium) 6.254
bit-probing (dense) 7.016
addition (character) 0.3665
addition (integer) 1.461

Table 1: Average time required for addition operations and
bit-probing operations on different data types and variable
densities.

see that in all cases, array additions are faster than bit-probing
operations.
Furthermore, regarding the three datasets we are using for the
evaluation of our approach, we found that the vast majority of
itemsets produced by our method contain less than 255 elements.
It is clear that the addition operations performed are mostly of
char type and this means that even if bitsets are sparse, addition
operations still are an order of magnitude faster than bit-probing.
Thus, we expect a large speedup when we use the FII for all three
of the datasets compared to the state-of-the-art (see Section 4.5).

4.3 Performance & memory footprint of FII
varying the itemset support threshold

In this section, we calculate the time required for the execution
of the analysis, as well as the memory footprint required for the
counters of the FII for variable support thresholds in regard to our
approach in Sections 3.1.4 and 3.1.5. More specifically, we set the
support threshold to 2, 6, 10, 14 and 16 and selected 10 different
inputs of 39 miRNAs (query classification 𝐴) as well as 10 different
sets of 1,000,000 miRNA groups (query classifications 𝐴 𝑗 ) and cal-
culated the average execution time for each support threshold. We
have also added a horizontal line demonstrating the performance
of BUFET, indicatively (full comparison experiments are presented
in Section 4.5). The results can be seen in Figure 6.
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set support threshold
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We can see that the performance of the index starts to decline
as the support threshold increases, which is to be expected, since
more operations that are slower (bit-probes) are performed. As we
increase the support threshold even more, our approach should
present with slightly higher execution times than the state-of-the-
art. The reason for this is that our approach (FII) adds an overhead,
like the allocation of memory, which will not be balanced by the
speedup after a point in regard to support threshold.
It is noteworthy, however, that the size of the FII counters almost
doubles as the support threshold increases from 2 to 6 for GO and 2
to 10 for the other datasets, before it starts dwindling. This can be
attributed to the fact that as the support threshold increases, large
itemsets with support = 2 are discarded. The reason why larger
itemsets have a support of 2 is that usually, the permutations of
elements in such itemsets are not found in more than 2 or 3 ground
classifications in each dataset. This means that their support gen-
erally tends to be low. Instead, a large number of smaller itemsets
with generally larger support are used to “cover” the ground clas-
sifications 𝐵𝑖 and this leads to a significant increase in memory
footprint since the size of the footprint depends on the number of
frequent itemsets.
Finally, it is also easy to observe that large support thresholds have
a greater negative impact on the execution times in case of the GO
dataset when compared to DGN or MeSH. This can be attributed
to the fact that 90% of the itemsets, produced by our method, in
GO had a support threshold ≤ 10, compared to 45% for DGN and
50% for MeSH. This is further corroborated by the fact that the
size of the index (which depends on the number of itemsets) has a
more significant decrease as the support threshold increases. It is
evident that the larger the number of frequent itemsets, the better
the performance of the FII is and since GO has fewer itemsets for
large support thresholds its performance degrades faster as the
support threshold increases compared to DGN and MeSH.

4.4 Setting the SLI significance threshold and
evaluating the filtering effectiveness

In this experiment we use the method described in Section 3.2.3 to
set the SLI significance threshold 𝑥 . Each experiment was repeated
10 times with different random query classifications𝐴1, . . . , 𝐴𝑛 ∈ A
and the outputs for each input were compared with each other. For
each dataset, the maximum standard deviation of all p-values can
be seen in Table 2.

Dataset % Max. st. deviation
GO 0.00105

DisGeNET 0.000997
MeSH 0.00105

Table 2: P-value maximum standard deviation for different
inputs for the three datasets

We can see that the standard deviation for all datasets is an order of
magnitude smaller than 0.05. Thus if we arbitrarily set the p-value
significance threshold to 0.075 (50% greater than 0.05) we expect
that the SLI will produce no false negatives. It also means that

the results of the randomization test (p-values) are not changing
significantly between multiple runs of the same experiment.
Furthermore, we used the same experimental setting with the SLI
index (20 inputs, 10 repetitions). Based on the outputs of the previ-
ous and the current experiment, for each input query classification,
we calculated the number of actually significant p-values that were
marked by the SLI as potentially significant (true positives) or
insignificant (false negatives) as well as the number of actually
insignificant p-values that were marked as insignificant (true nega-
tives) or significant (false positives). The average results for each
dataset can be seen in Figure 7.
It is easy to notice in Figure 7 that the standard deviation for all types
of ground classifications datasets is very large, since the number of
filtered and unfiltered categories depends on the one-sided overlap
of the input set of microRNAs (query classification 𝐴). However
we can see that the number of associations being filtered out by
the SLI are more than double on average compared to those for
which the randomization test is run. Additionally, we can see that
the SLI produces zero false negatives results for all cases which
is important, because it guarantees that we do not miss actually
significant results.

4.5 Comparison of state-of-the-art with our
two approaches

In this section we compare the two versions of our approach along
with the with the state-of-the-art (BUFET) in [22]. For this reason,
we used 10 inputs of 39 miRNAs (query classifications A) and we
also used a varying number of miRNA groups (query classifications
𝐴1, . . . , 𝐴𝑛 ∈ A), namely 10K, 100K and 1M. Moreover, as ground
classifications, we used the 3 datasets outlined in Section 4.1.
Finally, we configured the FII approach to use a support threshold
of 2 for frequent itemsets, since it leads to the best performance for
this approach. Regarding the SLI, we set the p-value significance
threshold 𝑥 to 0.075, because as we showed in Section 4.4, it pro-
duces no false negatives and thus, the output p-values of the test
will be reliable. The results can be seen in Figure 8.
It is clear that both our approaches significantly outperfom the
state-of-the-art (BUFET) and in the case of SLI, the execution times
are faster by almost an order of magnitude.

5 RELATEDWORK
Association testing is a very old problem and it belongs to a larger
class of statistical problems called hypothesis testing. Even though
hypothesis testing became popular in the 20th century, the first
references of statistical hypothesis testing started with the works
of John Arbuthnot [5] and Pierre-Simon Laplace [9], who tested
whether the gender-ratio of humans at birth is equally distributed.
Then, in the 1900 Karl Pearson introduced the Pearson’s chi-squared
test [2], William Sealy Gosset developed the Student’s t-test [18]
and Ronald Fisher developed Fisher’s exact test [11].
Randomization tests received attention in the 1800s with the work
of C. S. Peirce [15] and the are very popular in clinical trials and
life-sciences in general [7, 19]. However, since randomization tests
are computationally expensive there have been attempts to make
them faster [12, 21, 22] in order to allow researchers to run more
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Figure 7: Filtering performance of the SLI
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Figure 8: Comparison of our two approaches with the state-of-the-art

tests and gain more insight into the mechanisms of life in a shorter
amount of time.
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6 CONCLUSION
In this paper we introduced two novel indices in regard to random-
ization tests and we applied these in a real-world randomization
test. The first index (FII) leveraged the overlap that exists in the
data regarding ground classifications 𝐵𝑖 to reduce computations and
also eliminate redundant operations. We also introduced a novel
approach to discovering frequent itemsets with 𝑠𝑢𝑝_𝑡ℎ𝑟𝑒𝑠 = 2
among ground classifications, in order to use them for the FII. Fur-
thermore, we demonstrated that the second index (SLI) accurately
predicts whether the association between a query and an inde-
pendent, ground classification is potentially significant. Also, the
SLI successfully eliminated the vast majority of associations to be
tested, thus leading to even smaller execution times. Finally, we per-
formed experiments that clearly show that both of our approaches
are faster than the state-of-the-art (BUFET) and the approach with
the SLI is even faster (by an order of magnitude).
In the future, we plan to apply the techniques presented in this
paper to problems not only to other analyses from the domain of
life-sciences, but also to randomization experiments from other
scientific disciplines.
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