Dataset Open Access

Contact-based temperature, breathing and cough patterns dataset for early COVID-19 symptoms identification

Ali, Omer; Ishak, Mohamad Khairi; Bhatti, Muhammad Kamran Liaquat


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">covid-19</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">anomaly detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">feature extraction</subfield>
  </datafield>
  <controlfield tag="005">20210213002718.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">The dataset is self explanatory with different fields representing different states of the sensors. If unsure, please feel free to email the authors.</subfield>
  </datafield>
  <controlfield tag="001">4537822</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universiti Sains Malaysia</subfield>
    <subfield code="a">Ishak, Mohamad Khairi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical Engineering, NFC Institute of Engineering and Technology (NFC IET), Multan, Pakistan</subfield>
    <subfield code="a">Bhatti, Muhammad Kamran Liaquat</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">65017</subfield>
    <subfield code="z">md5:9eb6a211ad29e8e90c4cb9b0d8f374c5</subfield>
    <subfield code="u">https://zenodo.org/record/4537822/files/Patient-COVID-19.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-02-12</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-covid-19</subfield>
    <subfield code="p">user-zenodo</subfield>
    <subfield code="o">oai:zenodo.org:4537822</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Universiti Sains Malaysia</subfield>
    <subfield code="a">Ali, Omer</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Contact-based temperature, breathing and cough patterns dataset for early COVID-19 symptoms identification</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-covid-19</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-zenodo</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This release features the dataset recorded using our prototype hardware device (contact-based) that collects accelerometer and temperature readings to investigate breathing patterns, personal activity and cough patterns. As fever and cough are considered as two of the most common symptoms for COVID-19, our aim was to focus on these physiological features. In addition, research also states that all COVID-19 contractions showed elevated breathing patterns in patients, that could be easily identifiable from Eupnea state. Therefore, in this research project, we aimed at:&lt;br&gt;
1. Designing a prototype chest-worn device to measure dynamic chest movements (to record breathing and cough patterns)&lt;br&gt;
2. Detect different activity patterns&lt;br&gt;
3. Record temperature variations during idle and active stage&lt;br&gt;
4. Using unsupervised machine learning algorithm to detect anomalies by creating a composite score for (breathing and cough patterns as well as temperature).&amp;nbsp;&lt;/p&gt;

&lt;p&gt;This release also features some code examples that were used for data pre-processing, feature identification and anomaly detection using (K-means and DBSCAN algorithms).&amp;nbsp;&lt;/p&gt;

&lt;p&gt;It is important to note that this dataset should be considered and further investigated for preliminary exploratory analysis. The data was collected from healthy adults (that did not undergo COVID-19 clinical screening tests). Therefore, it must be clearly identified that this dataset DOES NOT represent positive COVID-19 contractions.&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4115561</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4537822</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
6,081
80
views
downloads
All versions This version
Views 6,0812,019
Downloads 8035
Data volume 354.0 MB2.3 MB
Unique views 5,8201,886
Unique downloads 7634

Share

Cite as