Dataset Open Access

MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music

Giorgia Cantisani; Gabriel Trégoat; Slim Essid; Gaël Richard


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>The&nbsp;<em><strong>MAD-EEG&nbsp;Dataset</strong></em> is&nbsp;a&nbsp;research&nbsp;corpus&nbsp;for studying&nbsp;EEG-based auditory attention decoding to a target instrument in polyphonic music.&nbsp;</p>\n\n<p>The dataset&nbsp;consists&nbsp;of&nbsp;20-channel&nbsp;EEG&nbsp;responses to music recorded from 8 subjects while attending to a particular instrument in&nbsp;a music mixture.&nbsp;</p>\n\n<p>For further details, please refer to the paper:&nbsp;<em><a href=\"https://hal.archives-ouvertes.fr/hal-02291882/document\">MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music</a>.</em></p>\n\n<p>If you use the data in your research, please reference the paper (not just&nbsp;the Zenodo record):</p>\n\n<pre><code>@inproceedings{Cantisani2019,\n  author={Giorgia Cantisani and Gabriel Tr\u00e9goat and Slim Essid and Ga\u00ebl Richard},\n  title={{MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music}},\n  year=2019,\n  booktitle={Proc. SMM19, Workshop on Speech, Music and Mind 2019},\n  pages={51--55},\n  doi={10.21437/SMM.2019-11},\n  url={http://dx.doi.org/10.21437/SMM.2019-11}\n}</code></pre>\n\n<p>&nbsp;</p>", 
  "license": "https://creativecommons.org/licenses/by-sa/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", 
      "@type": "Person", 
      "name": "Giorgia Cantisani"
    }, 
    {
      "@type": "Person", 
      "name": "Gabriel Tr\u00e9goat"
    }, 
    {
      "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", 
      "@type": "Person", 
      "name": "Slim Essid"
    }, 
    {
      "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", 
      "@type": "Person", 
      "name": "Ga\u00ebl Richard"
    }
  ], 
  "url": "https://zenodo.org/record/4537751", 
  "datePublished": "2019-09-19", 
  "version": "1.0.0", 
  "keywords": [
    "Auditory attention decoding", 
    "EEG", 
    "Polyphonic music"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/behavioural_data.xlsx", 
      "encodingFormat": "xlsx", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_preprocessed.hdf5", 
      "encodingFormat": "hdf5", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_preprocessed.yaml", 
      "encodingFormat": "yaml", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_raw.hdf5", 
      "encodingFormat": "hdf5", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_raw.yaml", 
      "encodingFormat": "yaml", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_sequences_raw.yaml", 
      "encodingFormat": "yaml", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/stimuli.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/tutorial-MAD-EEG.ipynb", 
      "encodingFormat": "ipynb", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.4537751", 
  "@id": "https://doi.org/10.5281/zenodo.4537751", 
  "@type": "Dataset", 
  "name": "MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music"
}
204
133
views
downloads
All versions This version
Views 204204
Downloads 133133
Data volume 122.7 GB122.7 GB
Unique views 172172
Unique downloads 5252

Share

Cite as