Dataset Open Access
Giorgia Cantisani; Gabriel Trégoat; Slim Essid; Gaël Richard
{ "inLanguage": { "alternateName": "eng", "@type": "Language", "name": "English" }, "description": "<p>The <em><strong>MAD-EEG Dataset</strong></em> is a research corpus for studying EEG-based auditory attention decoding to a target instrument in polyphonic music. </p>\n\n<p>The dataset consists of 20-channel EEG responses to music recorded from 8 subjects while attending to a particular instrument in a music mixture. </p>\n\n<p>For further details, please refer to the paper: <em><a href=\"https://hal.archives-ouvertes.fr/hal-02291882/document\">MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music</a>.</em></p>\n\n<p>If you use the data in your research, please reference the paper (not just the Zenodo record):</p>\n\n<pre><code>@inproceedings{Cantisani2019,\n author={Giorgia Cantisani and Gabriel Tr\u00e9goat and Slim Essid and Ga\u00ebl Richard},\n title={{MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music}},\n year=2019,\n booktitle={Proc. SMM19, Workshop on Speech, Music and Mind 2019},\n pages={51--55},\n doi={10.21437/SMM.2019-11},\n url={http://dx.doi.org/10.21437/SMM.2019-11}\n}</code></pre>\n\n<p> </p>", "license": "https://creativecommons.org/licenses/by-sa/4.0/legalcode", "creator": [ { "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", "@type": "Person", "name": "Giorgia Cantisani" }, { "@type": "Person", "name": "Gabriel Tr\u00e9goat" }, { "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", "@type": "Person", "name": "Slim Essid" }, { "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", "@type": "Person", "name": "Ga\u00ebl Richard" } ], "url": "https://zenodo.org/record/4537751", "datePublished": "2019-09-19", "version": "1.0.0", "keywords": [ "Auditory attention decoding", "EEG", "Polyphonic music" ], "@context": "https://schema.org/", "distribution": [ { "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/behavioural_data.xlsx", "encodingFormat": "xlsx", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_preprocessed.hdf5", "encodingFormat": "hdf5", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_preprocessed.yaml", "encodingFormat": "yaml", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_raw.hdf5", "encodingFormat": "hdf5", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_raw.yaml", "encodingFormat": "yaml", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_sequences_raw.yaml", "encodingFormat": "yaml", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/stimuli.zip", "encodingFormat": "zip", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/tutorial-MAD-EEG.ipynb", "encodingFormat": "ipynb", "@type": "DataDownload" } ], "identifier": "https://doi.org/10.5281/zenodo.4537751", "@id": "https://doi.org/10.5281/zenodo.4537751", "@type": "Dataset", "name": "MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music" }
All versions | This version | |
---|---|---|
Views | 204 | 204 |
Downloads | 133 | 133 |
Data volume | 122.7 GB | 122.7 GB |
Unique views | 172 | 172 |
Unique downloads | 52 | 52 |