Dataset Open Access
Giorgia Cantisani; Gabriel Trégoat; Slim Essid; Gaël Richard
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/behavioural_data.xlsx" }, "checksum": "md5:bcd8f706f0c1ab0eee8fe3211f0d8cfc", "bucket": "5905022b-3d32-4c1e-bfba-fea9514ee1b0", "key": "behavioural_data.xlsx", "type": "xlsx", "size": 13693 }, { "links": { "self": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_preprocessed.hdf5" }, "checksum": "md5:92f9c3684fe72203160b0838ff2bb0f7", "bucket": "5905022b-3d32-4c1e-bfba-fea9514ee1b0", "key": "madeeg_preprocessed.hdf5", "type": "hdf5", "size": 3725304231 }, { "links": { "self": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_preprocessed.yaml" }, "checksum": "md5:1d093597df6fb1bada04903e20b06201", "bucket": "5905022b-3d32-4c1e-bfba-fea9514ee1b0", "key": "madeeg_preprocessed.yaml", "type": "yaml", "size": 153880 }, { "links": { "self": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_raw.hdf5" }, "checksum": "md5:795d7eea8f66550898ca2afeec55767c", "bucket": "5905022b-3d32-4c1e-bfba-fea9514ee1b0", "key": "madeeg_raw.hdf5", "type": "hdf5", "size": 702084981 }, { "links": { "self": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_raw.yaml" }, "checksum": "md5:cda4950e78da7c9fe94b3c139b4d711f", "bucket": "5905022b-3d32-4c1e-bfba-fea9514ee1b0", "key": "madeeg_raw.yaml", "type": "yaml", "size": 77459 }, { "links": { "self": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/madeeg_sequences_raw.yaml" }, "checksum": "md5:815475b21c289107a03cb355f2d24e96", "bucket": "5905022b-3d32-4c1e-bfba-fea9514ee1b0", "key": "madeeg_sequences_raw.yaml", "type": "yaml", "size": 300700 }, { "links": { "self": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/stimuli.zip" }, "checksum": "md5:6165f80d0bc09ece2c42b10098434533", "bucket": "5905022b-3d32-4c1e-bfba-fea9514ee1b0", "key": "stimuli.zip", "type": "zip", "size": 288402242 }, { "links": { "self": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0/tutorial-MAD-EEG.ipynb" }, "checksum": "md5:67f281aba3e38caeabb627ef16a60830", "bucket": "5905022b-3d32-4c1e-bfba-fea9514ee1b0", "key": "tutorial-MAD-EEG.ipynb", "type": "ipynb", "size": 1411092 } ], "owners": [ 67250 ], "doi": "10.5281/zenodo.4537751", "stats": { "version_unique_downloads": 52.0, "unique_views": 172.0, "views": 204.0, "version_views": 204.0, "unique_downloads": 52.0, "version_unique_views": 172.0, "volume": 122669652397.0, "version_downloads": 133.0, "downloads": 133.0, "version_volume": 122669652397.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.4537751", "conceptdoi": "https://doi.org/10.5281/zenodo.4537750", "bucket": "https://zenodo.org/api/files/5905022b-3d32-4c1e-bfba-fea9514ee1b0", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4537750.svg", "html": "https://zenodo.org/record/4537751", "latest_html": "https://zenodo.org/record/4537751", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4537751.svg", "latest": "https://zenodo.org/api/records/4537751" }, "conceptdoi": "10.5281/zenodo.4537750", "created": "2021-08-31T15:31:01.379777+00:00", "updated": "2021-09-03T11:26:29.387025+00:00", "conceptrecid": "4537750", "revision": 5, "id": 4537751, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.4537751", "version": "1.0.0", "language": "eng", "title": "MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music", "license": { "id": "CC-BY-SA-4.0" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.21437/SMM.2019-11", "relation": "documents", "resource_type": "publication-conferencepaper" }, { "scheme": "doi", "identifier": "10.5281/zenodo.4537750", "relation": "isVersionOf" } ], "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "4537750" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "4537751" } } ] }, "communities": [ { "id": "ieee" }, { "id": "mir" } ], "grants": [ { "code": "765068", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::765068" }, "title": "New Frontiers in Music Information Processing", "acronym": "MIP-Frontiers", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "Auditory attention decoding", "EEG", "Polyphonic music" ], "publication_date": "2019-09-19", "creators": [ { "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", "name": "Giorgia Cantisani" }, { "name": "Gabriel Tr\u00e9goat" }, { "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", "name": "Slim Essid" }, { "affiliation": "LTCI, T\u00e9l\u00e9com Paris, Institut Polytechnique de Paris", "name": "Ga\u00ebl Richard" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "description": "<p>The <em><strong>MAD-EEG Dataset</strong></em> is a research corpus for studying EEG-based auditory attention decoding to a target instrument in polyphonic music. </p>\n\n<p>The dataset consists of 20-channel EEG responses to music recorded from 8 subjects while attending to a particular instrument in a music mixture. </p>\n\n<p>For further details, please refer to the paper: <em><a href=\"https://hal.archives-ouvertes.fr/hal-02291882/document\">MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music</a>.</em></p>\n\n<p>If you use the data in your research, please reference the paper (not just the Zenodo record):</p>\n\n<pre><code>@inproceedings{Cantisani2019,\n author={Giorgia Cantisani and Gabriel Tr\u00e9goat and Slim Essid and Ga\u00ebl Richard},\n title={{MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music}},\n year=2019,\n booktitle={Proc. SMM19, Workshop on Speech, Music and Mind 2019},\n pages={51--55},\n doi={10.21437/SMM.2019-11},\n url={http://dx.doi.org/10.21437/SMM.2019-11}\n}</code></pre>\n\n<p> </p>" } }
All versions | This version | |
---|---|---|
Views | 204 | 204 |
Downloads | 133 | 133 |
Data volume | 122.7 GB | 122.7 GB |
Unique views | 172 | 172 |
Unique downloads | 52 | 52 |