Dataset Open Access
Giorgia Cantisani; Gabriel Trégoat; Slim Essid; Gaël Richard
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.4537751</identifier> <creators> <creator> <creatorName>Giorgia Cantisani</creatorName> <affiliation>LTCI, Télécom Paris, Institut Polytechnique de Paris</affiliation> </creator> <creator> <creatorName>Gabriel Trégoat</creatorName> </creator> <creator> <creatorName>Slim Essid</creatorName> <affiliation>LTCI, Télécom Paris, Institut Polytechnique de Paris</affiliation> </creator> <creator> <creatorName>Gaël Richard</creatorName> <affiliation>LTCI, Télécom Paris, Institut Polytechnique de Paris</affiliation> </creator> </creators> <titles> <title>MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>Auditory attention decoding</subject> <subject>EEG</subject> <subject>Polyphonic music</subject> </subjects> <dates> <date dateType="Issued">2019-09-19</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4537751</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="Documents" resourceTypeGeneral="ConferencePaper">10.21437/SMM.2019-11</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4537750</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ieee</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/mir</relatedIdentifier> </relatedIdentifiers> <version>1.0.0</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by-sa/4.0/legalcode">Creative Commons Attribution Share Alike 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The&nbsp;<em><strong>MAD-EEG&nbsp;Dataset</strong></em> is&nbsp;a&nbsp;research&nbsp;corpus&nbsp;for studying&nbsp;EEG-based auditory attention decoding to a target instrument in polyphonic music.&nbsp;</p> <p>The dataset&nbsp;consists&nbsp;of&nbsp;20-channel&nbsp;EEG&nbsp;responses to music recorded from 8 subjects while attending to a particular instrument in&nbsp;a music mixture.&nbsp;</p> <p>For further details, please refer to the paper:&nbsp;<em><a href="https://hal.archives-ouvertes.fr/hal-02291882/document">MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music</a>.</em></p> <p>If you use the data in your research, please reference the paper (not just&nbsp;the Zenodo record):</p> <pre><code>@inproceedings{Cantisani2019, author={Giorgia Cantisani and Gabriel Trégoat and Slim Essid and Gaël Richard}, title={{MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music}}, year=2019, booktitle={Proc. SMM19, Workshop on Speech, Music and Mind 2019}, pages={51--55}, doi={10.21437/SMM.2019-11}, url={http://dx.doi.org/10.21437/SMM.2019-11} }</code></pre> <p>&nbsp;</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/765068/">765068</awardNumber> <awardTitle>New Frontiers in Music Information Processing</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 207 | 207 |
Downloads | 133 | 133 |
Data volume | 122.7 GB | 122.7 GB |
Unique views | 175 | 175 |
Unique downloads | 52 | 52 |