Dataset Open Access

MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music

Giorgia Cantisani; Gabriel Trégoat; Slim Essid; Gaël Richard


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.4537751", 
  "language": "eng", 
  "title": "MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music", 
  "issued": {
    "date-parts": [
      [
        2019, 
        9, 
        19
      ]
    ]
  }, 
  "abstract": "<p>The&nbsp;<em><strong>MAD-EEG&nbsp;Dataset</strong></em> is&nbsp;a&nbsp;research&nbsp;corpus&nbsp;for studying&nbsp;EEG-based auditory attention decoding to a target instrument in polyphonic music.&nbsp;</p>\n\n<p>The dataset&nbsp;consists&nbsp;of&nbsp;20-channel&nbsp;EEG&nbsp;responses to music recorded from 8 subjects while attending to a particular instrument in&nbsp;a music mixture.&nbsp;</p>\n\n<p>For further details, please refer to the paper:&nbsp;<em><a href=\"https://hal.archives-ouvertes.fr/hal-02291882/document\">MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music</a>.</em></p>\n\n<p>If you use the data in your research, please reference the paper (not just&nbsp;the Zenodo record):</p>\n\n<pre><code>@inproceedings{Cantisani2019,\n  author={Giorgia Cantisani and Gabriel Tr\u00e9goat and Slim Essid and Ga\u00ebl Richard},\n  title={{MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music}},\n  year=2019,\n  booktitle={Proc. SMM19, Workshop on Speech, Music and Mind 2019},\n  pages={51--55},\n  doi={10.21437/SMM.2019-11},\n  url={http://dx.doi.org/10.21437/SMM.2019-11}\n}</code></pre>\n\n<p>&nbsp;</p>", 
  "author": [
    {
      "family": "Giorgia Cantisani"
    }, 
    {
      "family": "Gabriel Tr\u00e9goat"
    }, 
    {
      "family": "Slim Essid"
    }, 
    {
      "family": "Ga\u00ebl Richard"
    }
  ], 
  "version": "1.0.0", 
  "type": "dataset", 
  "id": "4537751"
}
207
133
views
downloads
All versions This version
Views 207207
Downloads 133133
Data volume 122.7 GB122.7 GB
Unique views 175175
Unique downloads 5252

Share

Cite as