Dataset Open Access
Giorgia Cantisani; Gabriel Trégoat; Slim Essid; Gaël Richard
{ "publisher": "Zenodo", "DOI": "10.5281/zenodo.4537751", "language": "eng", "title": "MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music", "issued": { "date-parts": [ [ 2019, 9, 19 ] ] }, "abstract": "<p>The <em><strong>MAD-EEG Dataset</strong></em> is a research corpus for studying EEG-based auditory attention decoding to a target instrument in polyphonic music. </p>\n\n<p>The dataset consists of 20-channel EEG responses to music recorded from 8 subjects while attending to a particular instrument in a music mixture. </p>\n\n<p>For further details, please refer to the paper: <em><a href=\"https://hal.archives-ouvertes.fr/hal-02291882/document\">MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music</a>.</em></p>\n\n<p>If you use the data in your research, please reference the paper (not just the Zenodo record):</p>\n\n<pre><code>@inproceedings{Cantisani2019,\n author={Giorgia Cantisani and Gabriel Tr\u00e9goat and Slim Essid and Ga\u00ebl Richard},\n title={{MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music}},\n year=2019,\n booktitle={Proc. SMM19, Workshop on Speech, Music and Mind 2019},\n pages={51--55},\n doi={10.21437/SMM.2019-11},\n url={http://dx.doi.org/10.21437/SMM.2019-11}\n}</code></pre>\n\n<p> </p>", "author": [ { "family": "Giorgia Cantisani" }, { "family": "Gabriel Tr\u00e9goat" }, { "family": "Slim Essid" }, { "family": "Ga\u00ebl Richard" } ], "version": "1.0.0", "type": "dataset", "id": "4537751" }
All versions | This version | |
---|---|---|
Views | 207 | 207 |
Downloads | 133 | 133 |
Data volume | 122.7 GB | 122.7 GB |
Unique views | 175 | 175 |
Unique downloads | 52 | 52 |