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Abstract

When building machine translation systems,
one often needs to make the best out of
heterogeneous sets of parallel data in train-
ing, and to robustly handle inputs from un-
expected domains in testing. This multi-
domain scenario has attracted a lot of recent
work, that fall under the general umbrella of
transfer learning. In this study, we revisit
multi-domain machine translation, with the
aim to formulate the motivations for devel-
oping such systems and the associated ex-
pectations with respect to performance. Our
experiments with a large sample of multi-
domain systems show that most of these ex-
pectations are hardly met and suggest that
further work is needed to better analyze the
current behaviour of multi-domain systems
and to make them fully hold their promises.

1 Introduction

Data-based Machine Translation (MT), whether
statistical or neural, rests on well understood
machine learning principles. Given a training
sample of matched source-target sentence pairs
(f , e) drawn from an underlying distribution Ds,
a model parameterized by θ (here, a translation
function hθ) is trained by minimizing the empiri-
cal expectation of a loss function `(hθ(f), e). This
approach ensures that the translation loss remains
low when translating more sentences drawn from
the same distribution.

Owing to the great variability of language data,
this ideal situation is rarely met in practice, war-
ranting the study of an alternative scenario, where
the test distributionDt differs fromDs. In this set-
ting, domain adaptation (DA) methods are in or-
der. DA has a long history in Machine Learning in
general (e.g. (Shimodaira, 2000; Ben-David et al.,
2010; Joaquin Quionero-Candela and Lawrence,
2008; Pan and Yang, 2010)) and in NLP in par-
ticular (eg. (Daumé III and Marcu, 2006; Blitzer,

2007; Jiang and Zhai, 2007)). Various techniques
thus exist to handle both the situations where a
(small) training sample drawn fromDt is available
in training, or where only samples of source-side
(or target-side) sentences are available (see (Fos-
ter and Kuhn, 2007; Bertoldi and Federico, 2009;
Axelrod et al., 2011) for proposals from the statis-
tical MT era, or (Chu and Wang, 2018) for a recent
survey of DA for Neural MT).

A seemingly related problem is multi-domain
(MD) machine translation (Sajjad et al., 2017;
Farajian et al., 2017b; Kobus et al., 2017; Zeng
et al., 2018; Pham et al., 2019) where one single
system is trained and tested with data from mul-
tiple domains. MD machine translation (MDMT)
corresponds to a very common situation, where all
available data, no matter its origin, is used to train
a robust system that performs well for any kind
of new input. If the intuitions behind MDMT are
quite simple, the exact specifications of MDMT
systems are rarely spelled out: for instance, should
MDMT perform well when the test data is dis-
tributed like the training data, when it is equally
distributed across domains or when the test distri-
bution is unknown? Should MDMT also be robust
to new domains? How should it handle domain
labeling errors?

A related question concerns the relationship be-
tween supervised domain adaptation and multi-
domain translation. The latter task seems more
challenging as it tries to optimize MT performance
for a more diverse set of potential inputs, with an
additional uncertainty regarding the distribution of
test data. Are there still situations where MD sys-
tems can surpass single domain adaptation, as is
sometimes expected?

In this paper, we formulate in a more precise
fashion the requirements that an effective MDMT
system should meet (Section 2). Our first contri-
bution is thus of methodological nature and con-
sists of lists of expected properties of MDMT



systems and associated measurements to evaluate
them (Section 3). In doing so, we also shed light
on new problems that arise in this context, regard-
ing for instance the accommodation of new do-
mains in the course of training, or the computa-
tion of automatic domain tags. Our second main
contribution is experimental and consists in a thor-
ough reanalysis of eight recent multi-domain ap-
proaches from the literature, including a variant of
a model initially introduced for DA. We show in
Section 4 that existing approaches still fall short
to match many of these requirements, notably with
respect to the handling of a large amount of hetero-
geneous domains and to dynamically integrating
new domains in training.

2 Requirements of multi-domain MT

In this section, we recap the main reasons for con-
sidering a multi-domain scenario and discuss their
implications in terms of performance evaluation.

2.1 Formalizing multi-domain translation

We conventionally define a domain d as a distri-
bution Dd(x) over some feature space X that is
shared across domains (Pan and Yang, 2010): in
machine translation, X is the representation space
for source sentences; each domain corresponds to
a specific source of data, and differs from the other
data sources in terms of textual genre, thematic
content (Chen et al., 2016; Zhang et al., 2016),
register (Sennrich et al., 2016a), style (Niu et al.,
2018), etc. Translation in domain d is formalized
by a translation function hd(y|x) pairing sentences
in a source language with sentences in a target lan-
guage y ∈ Y . hd is usually assumed to be deter-
ministic (hence y = hd(x)), but can differ from
one domain to the other.

A typical learning scenario in MT is to have ac-
cess to samples from nd domains, which means
that the training distribution Ds is a mixture
Ds(x) =

∑
d λ

s
dDd(x), with {λsd, d = 1 . . . nd}

the corresponding mixture weights (
∑

d λ
s
d = 1).

Multi-domain learning, as defined in Dredze and
Crammer (2008) further assumes that domain tags
are also available in testing; the implication be-
ing that the test distribution is also as a mix-
ture Dt(x) =

∑
d λ

t
dDd(x) of several domains,

making the problem distinct from mere domain
adaption. A multi-domain learner is then ex-
pected to use these tags effectively (Joshi et al.,
2012) when computing the combined translation

function h(x, d), and to perform well in all do-
mains (Finkel and Manning, 2009). This setting
is closely related to the multi-source adaptation
problem formalized in (Mansour et al., 2009a,b;
Hoffman et al., 2018).

This definition seems to be the most accepted
view of a multi-domain MT1 and one that we
also adopt here. Note that in the absence of fur-
ther specification, the naive answer to the MD set-
ting should be to estimate one translation function
ĥd(x) separately for each domain, then to translate
using ĥ(x, d) =

∑
d′ hd′(x)I(d′ = d), where I(x)

is the indicator function. We now discuss the argu-
ments that are put forward to proceed differently.

2.2 Reasons for building MDMT systems
A first motivation for moving away from the one-
domain / one-system solution are practical (Sen-
nrich et al., 2013; Farajian et al., 2017a): when
faced with inputs that are potentially from multiple
domains, it is easier and computationally cheaper
to develop one single system instead of having to
optimize and maintain multiple engines. The un-
derlying assumption here is that the number of
domains of interests can be large, a limiting sce-
nario being fully personalized machine translation
(Michel and Neubig, 2018).

A second line of reasoning rests on linguis-
tic properties of the translation function and con-
tends that domain specificities are mostly ex-
pressed lexically and will primarily affect con-
tent words or multi-word expressions; function
words, on the other hand, are domain agnostic and
tend to remain semantically stable across domains,
motivating some cross-domain parameter sharing.
An MDMT system should simultaneously learn
lexical domain peculiarities, and leverage cross-
domain similarities to improve the translation of
generic contexts and words (Zeng et al., 2018;
Pham et al., 2019). It is here expected that the
MDMT scenario should be more profitable when
the domain mix includes domains that are closely
related and can share more information.

A third series of motivations are of statistical
nature. The training data available for each do-
main is usually unevenly distributed, and domain-
specific systems trained or adapted on small
datasets are likely to have a high variance and
generalize poorly. For some test domains, there

1An exception is (Farajian et al., 2017b), where test trans-
lations rely on similarity scores between test and train sen-
tences, rather than on domain labels.



may even be no data at all (Farajian et al., 2017a).
Training mix-domain systems is likely to reduce
this variance, at the expense of a larger statistical
bias (Clark et al., 2012). Under this view, MDMT
would be especially beneficial for domains with
little training data. This is observed for multilin-
gual MT from English: an improvement for under-
resourced languages due to positive transfer, at
the cost of a decrease in performance for well-
resourced languages (Arivazhagan et al., 2019).

Combining multiple domain-specific MTs can
also be justified in the sake of distributional ro-
bustness (Mansour et al., 2009a,b), for instance
when the test mixture differs from the train mix-
ture, or when it includes new domains unseen in
training. An even more challenging case is when
the MT would need to perform well for any test
distribution, as studied for statistical MT in (Huck
et al., 2015). In all these cases, mixing domains in
training and/or testing is likely to improve robust-
ness against unexpected or adversarial test distri-
bution (Oren et al., 2019).

A distinct line of reasoning is that mixing do-
mains can have a positive regularization effect for
all domains. By introducing variability in training,
it prevents DA from overfitting the available adap-
tation data and could help improve generalization
even for well-resourced domains. A related case
is made in (Joshi et al., 2012), which shows that
part of the benefits of MD training is due to an
ensembling effect, where systems from multiple
domains are simultaneously used in the prediction
phase; this effect may subsist even in the absence
of clear domain separations.

To recap, there are multiple arguments for
adopting MDMT, some already used in DA set-
tings, and some original. These arguments are not
mutually exclusive; however each yields specific
expectations with respect to the performance of
this approach, and should also yield appropriate
evaluation procedure. If the motivation is primar-
ily computational, then a drop in MT quality with
respect to multiple individual domains might be
acceptable if compensated by the computational
savings. If it is to improve statistical estimation,
then the hope will be that MDMT will improve, at
least for some under-resourced domains, over in-
dividually trained systems. If finally, it is to make
the system more robust to unexpected or adversar-
ial test distributions, then this is the setting that
should be used to evaluate MDMT. The next sec-

tion discusses ways in which these requirements
of MDMT systems could be challenged.

3 Challenging multi-domain systems

In this section, we propose seven operational re-
quirements that can be expected from an effective
multi-domain system, and discuss ways to evalu-
ate whether these requirements are actually met.
All these evaluations will rest on comparison of
translation performance, and do not depend on the
choice of a particular metric. To make our results
comparable with the literature, we will only use
the BLEU score (Papineni et al., 2002) in Sec-
tion 4, noting it may not be the best yardstick to
assess subtle improvements of lexical choices that
are often associated with domain adapted systems
(Irvine et al., 2013). Other important figures of
merit for MDMT systems are the computational
training cost and the total number of parameters.

3.1 Multi-domain systems should be effective

A first expectation is that MDMT systems should
perform well in the face of mixed-domain test
data. We thus derive the following requirements.

[P1-LAB] A MDMT should perform better than
the baseline which disregards domain labels, or
reassigns them in a random fashion (Joshi et al.,
2012). Evaluating this requirement is a matter of
a mere comparison, assuming the test distribution
of domains is known: if all domains are equally
important, performance averages can be reported;
if they are not, weighted averages should be used
instead.

[P2-TUN] Additionally, one can expect that
MDMT will improve over fine-tuning (Luong and
Manning, 2015; Freitag and Al-Onaizan, 2016), at
least in domains where data is scarce, or in situ-
ations where several domains are close. To eval-
uate this, we perform two measurements, using a
real as well as an artificial scenario. In the real
scenario, we simply compare the performance of
MDMT and fine-tuning for domains of varying
sizes, expecting a larger gain for smaller domains.
In the artificial scenario, we split a single domain
in two parts which are considered as distinct in
training. The expectation here is that a MDMT
should yield a clear gain for both pseudo sub-
domains, which should benefit from the supple-
mentary amount of relevant training. In this situ-
ation, MDMT should even outperform fine-tuning



on either of the pseudo sub-domain.

3.2 Robustness to fuzzy domain separation
A second set of requirements is related to the def-
inition of a domain. As repeatedly pointed out
in the literature, parallel corpora in MT are often
collected opportunistically and the view that each
corpus constitutes a single domain is often a gross
approximation.2 MDMT should aim to make the
best of the available data and be robust to domain
assignments. To challenge these requirements we
propose evaluating the following requirements.

[P3-HET] The notion of a domain being a frag-
ile one, an effective MDMT system should be able
to discover not only when cross-domain sharing is
useful (cf. requirement [P2-TUN]), but also when
intra-domain heterogeneity is hurting. This re-
quirement is tested by artificially conjoining sepa-
rate domains into one during training, hoping that
the loss in performance with respect to the base-
line (using correct domain tags) will remain small.

[P4-ERR] MDMTs should perform best when
the true domain tag is known, but deteriorate
gracefully in the face of tag errors; in this situa-
tion, catastrophic drops in performance are often
observed. This requirement can be assessed by
translating test texts with erroneous domain tags
and reporting the subsequent loss in performance.

[P5-UNK] A related situation occurs when the
domain of a test document is unknown. Several
situations need be considered: for domains seen
in training, using automatically predicted domain
labels should not be much worse than using the
correct one. For test documents from unknown
domains (zero-shot transfer), a good MD system
should ideally outperform the default baseline that
merges all available data.

[P6-DYN] Another requirement, more of an op-
erational nature, is that an MDMT system should
smoothly evolve to handle a growing number of
domains, without having to retrain the full system
each time new data is available. This is a require-
ment [P6-DYN] that we challenge by dynamically
changing the number of training and test domains.

3.3 Scaling to a large number of domains
[P7-NUM] As mentioned above, MDMT sys-
tems have often been motivated by computational

2Two of our own “domains” actually comprise several
subcorpora (IT and MED), see details in Section 4.1.

arguments. This argument is all the more sensi-
ble as the number of domains increases, making
the optimization of many individual systems both
ineffective and undesirable. For lack of having ac-
cess to corpora containing very large sets (eg. in
the order of 100-1000) domains, we experiment
with automatically learned domains.

4 Experimental settings

4.1 Data and metrics

We experiment with translation from English into
French and use texts initially originating from
6 domains, corresponding to the following data
sources: the UFAL Medical corpus V1.0 (MED)3,
the European Central Bank corpus (BANK) (Tiede-
mann, 2012); The JRC-Acquis Communautaire
corpus (LAW) (Steinberger et al., 2006), documen-
tations for KDE, Ubuntu, GNOME and PHP from
Opus collection (Tiedemann, 2009), collectively
merged in a IT-domain, Ted Talks (TALK) (Cet-
tolo et al., 2012), and the Koran (REL). Com-
plementary experiments also use v12 of the News
Commentary corpus (NEWS). Most corpora are
available from the Opus web site.4 These cor-
pora were deduplicated and tokenized with in-
house tools; statistics are in Table 1. To reduce the
number of types and build open-vocabulary sys-
tems, we use Byte-Pair Encoding (Sennrich et al.,
2016b) with 30,000 merge operations on a corpus
containing all sentences in both languages.

We randomly select in each corpus a devel-
opment and a test set of 1,000 lines and keep
the rest for training.5 Validation sets are used
to chose the best model according to the aver-
age BLEU score (Papineni et al., 2002).6 Signifi-
cance testing is performed using bootstrap resam-
pling (Koehn, 2004), implemented in compare-
mt7 (Neubig et al., 2019). We report significant
differences at the level of p = 0.05.

We measure the distance between domains us-
ing the H-Divergence (Ben-David et al., 2010),
which relates domain similarity to the test error
of a domain discriminator: the larger the error,

3https://ufal.mff.cuni.cz/ufal_
medical_corpus. We only use the in-domain (medical)
subcorpora: PATR, EMEA, CESTA, ECDC.

4http://opus.nlpl.eu
5The code for reproducing our train, dev and test datasets

is available at https://github.com/qmpham/
experiments.

6We use truecasing and the multibleu script.
7https://github.com/neulab/compare-mt

https://ufal.mff.cuni.cz/ufal_medical_corpus
https://ufal.mff.cuni.cz/ufal_medical_corpus
http://opus.nlpl.eu
https://github.com/qmpham/experiments
https://github.com/qmpham/experiments
https://github.com/neulab/compare-mt


MED LAW BANK IT TALK REL NEWS

# lines 2609 (0.68) 501 (0.13) 190 (0.05) 270 (0.07) 160 (0.04) 130 (0.03) 260 (0)
# tokens 133 / 154 17.1 / 19.6 6.3 / 7.3 3.6 / 4.6 3.6 / 4.0 3.2 / 3.4 7.8 / 9.2
# types 771 / 720 52.7 / 63.1 92.3 / 94.7 75.8 / 91.4 61.5 / 73.3 22.4 / 10.5 -
# uniq 700 / 640 20.2 / 23.7 42.9 / 40.1 44.7 / 55.7 20.7 / 25.6 7.1 / 2.1 -

Table 1: Corpora statistics: number of parallel lines (×103) and proportion in the basic domain mixture (which
does not include the NEWS domain), number of tokens in English and French (×106), number of types in English
and French (×103), number of types that only appear in a given domain (×103). MED is the largest domain,
containing almost 70% of the sentences, while REL is the smallest, with only 3% of the data.

LAW BANK TALK IT REL

MED 1.93 1.97 1.9 1.93 1.97
LAW 1.94 1.97 1.93 1.99
BANK 1.98 1.94 1.99
TALK 1.92 1.93
IT 1.99

Table 2: TheH-divergence between domains

the closer the domains. Our discriminator is a
SVM independently trained for each pair of do-
mains, with sentence representations derived via
mean pooling from the source side representation
of the generic Transformer model. We used the
scikit-learn8 implementation with default values.
Results in Table 2 show that all domains are well
separated from all others, with REL being the fur-
thest apart, while TALK is slightly more central.

4.2 Baselines

Our baselines are standard for multi-domain sys-
tems.9 Using Transformers (Vaswani et al.,
2017) implemented in OpenNMT-tf10 (Klein et al.,
2017), we build the following systems:

• a generic model trained on a concatenation
of all corpora (Mixed). We develop two ver-
sions11 of this system, one where the domain
unbalance reflects the distribution of our
training data given in Table 1 (Mixed-Nat)
and one where all domains are equally repre-
sented in training (Mixed-Bal). The for-
mer is the best option when the train mix-
ture Ds is also expected in testing; the lat-

8https://scikit-learn.org
9We however omit domain-specific systems trained only

with the corresponding subset of the data, which are always
inferior to the mix-domain strategy (Britz et al., 2017).

10https://github.com/OpenNMT/OpenNMT-tf
11In fact three: to enable a fair comparison with WDCMT,

a RNN-based variant is also trained and evaluated. This sys-
tem appears as Mixed-Nat-RNN in Table 3.

ter should be used when the test distribution
is uniform across domains. Accordingly, we
report two aggregate scores: a weighted av-
erage reflecting the training distribution, and
an unweighted average, meaning that test do-
mains are equally important.

• fine-tuned models (Luong and Manning,
2015; Freitag and Al-Onaizan, 2016), based
on the Mixed-Nat system, further trained
on each domain for at most 20 000 iter-
ations, with early stopping when the dev
BLEU stops increasing. The full fine-tuning
(FT-Full) procedure may update all the pa-
rameters of the initial generic model, result-
ing in six systems adapted for one domain,
with no parameter sharing across domains.

All models use embeddings and the hidden lay-
ers sizes of dimension 512. Transformers contain
with 8 attention heads in each of the 6+6 layers;
the inner feedforward layer contains 2048 cells.
The adapter-based systems (see below) addition-
ally use an adaptation block in each layer, com-
posed of a 2-layer perceptron, with an inner ReLU
activation function operating on normalized en-
tries of dimension 1024. Training uses batches
of 12,288 tokens, Adam with parameters β1 =
0.9, β2 = 0.98, Noam decay (warmup steps =
4000), and a dropout rate of 0.1 in all layers.

4.3 Multi-domain systems
Our comparison of multi-domain systems includes
our own reimplementations of recent proposals
from the literature:12

• a system using domain control as in (Kobus
et al., 2017): domain information is intro-
duced either as an additional token for each
source sentence (DC-Tag), or as a supple-
mentary feature for each word (DC-Feat).

12Further implementation details are in Appendix A.

https://scikit-learn.org
https://github.com/OpenNMT/OpenNMT-tf


• a system using lexicalized domain represen-
tations (Pham et al., 2019): word embeddings
are composed of a generic and a domain spe-
cific part (LDR);

• the three proposals of Britz et al. (2017). TTM
is a feature-based approach where the domain
tag is introduced as an extra word on the tar-
get side. Training uses reference tags and in-
ference is usually performed with predicted
tags, just like for regular target words. DM is
a multi-task learner where a domain classi-
fier is trained on top the MT encoder, so as to
make it aware of domain differences; ADM is
the adversarial version of DM, pushing the en-
coder towards learning domain-independent
source representations. These methods thus
only use domain tags in training.

• the multi-domain model of Zeng et al. (2018)
(WDCMT), where a domain-agnostic and a
domain-specialized representation of the in-
put are simultaneously processed; super-
vised classification and adversarial training
are used to compute these representations.
Again, inference does not use domain tags.13

• two multi-domain versions of the approach
of Bapna and Firat (2019), denoted FT-Res
and MDL-Res, where a domain-specific
adaptation module is added to all the Trans-
former layers; within each layer, residual
connections enable to short-cut this adapter.
The former variant corresponds to the origi-
nal proposal of Bapna and Firat (2019) (see
also (Sharaf et al., 2020)). It fine-tunes the
adapter modules of a Mixed-Nat system
independently for each domain, keeping all
the other parameters frozen. The latter uses
the same architecture, but a different training
procedure and learns all parameters jointly
from scratch with a mix-domain corpus.

This list includes systems that slightly depart from
our definition of MDMT: standard implementa-
tions of TTM and WDCMT rely on infered, rather
than on gold, domain tags - which must somewhat
affect their predictions; DM and ADM make no use

13For this system, we use the available RNN-based
system from the authors (https://github.com/
DeepLearnXMU/WDCNMT) which does not directly com-
pare to the other, Transformer-based, systems; the improved
version of (Su et al., 2019) seems to produce comparable,
albeit slightly improved, results.

of domain tags at all. We however did not consider
the proposal of (Farajian et al., 2017b) which per-
forms on-the-fly tuning for each test sentence and
diverges more strongly from our notion of MDMT.

5 Results and discussion

5.1 Performance of MDMT systems

In this section, we discuss the basic performance
of MDMT systems trained and tested on 6 do-
mains. Results are in Table 3. As expected, bal-
ancing data in the generic setting makes a great
difference (the unweighted average is 2 BLEU
points better, notably owing to the much better re-
sults for REL). As explained above, this setting
should be the baseline when the test distribution
is assumed to be balanced across domains. As all
other systems are trained with an unbalanced data
distribution, we use the weighted average to per-
form global comparisons.

Fine-tuning each domain separately yields a
better baseline, outperforming Mixed-Nat for
all domains, with significant gains for domains
that are distant from MED: REL, IT, BANK, LAW.

All MDMTs (except DM and ADM) slightly im-
prove over Mixed-Nat(for most domains), but
these gains are rarely significant. Among sys-
tems using an extra domain feature, DC-Tag has
a small edge over DC-Feat and also requires less
parameters; it also outperforms TTM, which how-
ever uses predicted rather than gold domain tags.
TTM is also the best choice among the systems that
do not use domain tags in inference. The best con-
tenders overall are FT-Res and MDL-Res, which
significantly improve over Mixed-Nat for a ma-
jority of domains, and are the only ones to clearly
fulfill [P1-LAB]; WDCMT also improves on three
domains, but regresses on one. The use of a ded-
icated adaptation module thus seems better than
feature-based strategies, but yields a large increase
of the number of parameters. The effect of the
adaptation layer is especially significant for small
domains (BANK, IT and REL).

All systems fail to outperform fine-tuning,
sometimes by a wide margin, especially for an
“isolated” domain like REL. This might be due to
the fact that domains are well separated (cf. Sec-
tion 4.1) and are hardly helping each other. In this
situation, MDMT systems should dedicate a suffi-
cient number of parameters to each domain, so as
to close the gap with fine-tuning.

https://github.com/DeepLearnXMU/WDCNMT
https://github.com/DeepLearnXMU/WDCNMT


Model / Domain MED LAW BANK TALK IT REL wAVG AVG

Mixed-Nat [65m] 37.3 54.6 50.1 33.5 43.2 77.5 41.1 49.4
Mixed-Bal [65m] 35.3 54.1 52.5 31.9 44.9 89.5 40.3 51.4
FT-Full [6×65m] 37.7 59.2 54.5 34.0 46.8 90.8 42.7 53.8
DC-Tag [+4k] 38.1 55.3 49.9 33.2 43.5 80.5 41.6 50.1
DC-Feat [+140k] 37.7 54.9 49.5 32.9 43.6 79.9 41.4 49.9
LDR [+1.4m] 37.0 54.7 49.9 33.9 43.6 79.9 40.9 49.8
TTM [+4k] 37.3 54.9 49.5 32.9 43.6 79.9 41.0 49.7
DM [+0] 35.6 49.5 45.6 29.9 37.1 62.4 38.1 43.4
ADM [+0] 36.4 53.5 48.3 32.0 41.5 73.4 38.9 47.5
FT-Res [+12.4m] 37.3 57.9 53.9 33.8 46.7 90.2 42.3 53.3
MDL-Res [+12.4m] 37.9 56.0 51.2 33.5 44.4 88.3 42.0 51.9
Mixed-Nat-RNN [51m] 36.8 53.8 47.2 30.0 35.7 60.2 39.2 44.0
WDCMT [73m] 36.0 53.3 48.8 31.1 38.8 58.5 39.0 44.4

Table 3: Translation performance of MDMT systems based on the same Transformer (top) or RNN (bottom)
architecture. The former contains 65m parameters, the latter has 51m. For each system, we report the number of
additional domain specific parameters, BLEU scores for each domain, domain-weighted (wAVG) and unweighted
(AVG) averages. For weighted-averages, we take the domain proportions from Table 1. Boldface denotes significant
gains with respect to Mix-Nat (or Mix-Nat-RNN, for WDCMT), underline denotes significant losses.

5.2 Redefining domains

Table 4 summarizes the results of four experi-
ments where we artificially redefine the bound-
aries of domains, with the aim to challenge re-
quirements [P2-TUN], [P3-HET], and [P4-ERR].
In first three, we randomly split one corpus in
two parts and proceed as if this corresponded to
two actual domains. A MD system should detect
that these two pseudo-domains are mutually bene-
ficial and should hardly be affected by this change
with respect to the baseline scenario (no split). In
this situation, we expect MDMT to even surpass
fine-tuning separately on each of these dummy
domains, as MDMT exploits all data, while fine-
tuning focuses only on a subpart. In testing, we
decode the test set twice, once with each pseudo-
domain tag. This makes no difference for TTM,
DM, ADM and WDCMT, which do not use domain
tags in testing. In the merge experiment, we merge
two corpora in training, in order to assess the
robustness with respect to heterogenous domains
[P3-HET]. We then translate the two correspond-
ing tests with the same (merged) system.

Our findings can be summarized as follows.
For the split experiments, we see small variations
that can be positive or negative compared to the
baseline situation, but these are hardly signifi-
cant. All systems show some robustness with re-
spect to fuzzy domain boundaries; this is mostly
notable for ADM, suggesting that when domain

are close, ignoring domain differences is effec-
tive. In contrary, FT-Full incurs clear losses
across the board, especially for the small data
condition (Miceli Barone et al., 2017). Even
in this very favourable case however, very few
MDMT systems are able to significantly outper-
form FT-Full and this is only observed for the
smaller part of the MED domain. The merge condi-
tion is hardly different, with again large losses for
FT-full and FT-Res, and small variations for
all systems. We even observe some rare improve-
ments with respect to the situation where we use
actual domains.

5.2.1 Handling wrong or unknown domains
In the last two columns of Table 4, we report the
drop in performance when the domain information
is not correct. In the first (RND), we use test data
from the domains seen in training, presented with
a random domain tag. In this situation, the loss
with respect to using the correct tag is generally
large (more than 10 BLEU points), showing an
overall failure to meet requirement [P4-ERR], ex-
cept for systems that ignore domain tags in testing.

In the second (NEW), we assess [P5-UNK] by
translating sentences from a domain unseen in
training (NEWS). For each sentence, we automat-
ically predict the domain tag and use it for de-
coding.14 In this configuration, again, systems us-

14Domain tags are assigned as follows: we train a language
model for each domain and assign tag on a per-sentence basis



Set-up Split Split Split Merge Wrong
Model MED (0.5 / 0.5) MED (0.25 / 0.75) LAW (0.5 / 0.5) BANK+LAW RND NEW

MED1 MED2 MED1 MED2 LAW1 LAW2 BANK LAW ALL NEWS
FT-Full -0.1 -0.6 -1.5 -0.2 -2.3 -5.1 -1.6 -1.4 -19.6 -3.3
DC-Tag -0.2 -0.3 +0.1 +0.2 -0.4 -0.4 -0.5 -0.4 -13.4 -1.7
DC-Feat -0.5 0.0 +0.3 +0.3 +0.3 +0.3 +0.3 +0.1 -14.2 -1.8
LDR +0.1 +0.1 +0.4 +0.4 0.0 0.0 0.0 +0.1 -12.0 -1.4
TTM (*) -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 0.0 -0.3 0.0 -0.1
DM (*) -0.3 -0.3 +0.4 +0.4 +0.3 +0.3 +0.9 +0.1 0.0 -0.9
ADM (*) +0.6 +0.6 +0.4 +0.4 +0.4 +0.4 +0.1 -0.4 0.0 -0.2
FT-Res -0.1 -0.4 -0.3 -0.3 -2.2 -2.9 -2.4 -3.2 -13.3 -3.0
MDL-Res -0.2 -0.1 +0.2 +0.0 -0.9 -0.9 +0.7 -0.3 -18.6 -1.3
WDCMT (*) -0.0 -0.0 +0.2 +0.2 +0.8 +0.8 -0.4 -0.8 0.0 +0.2

Table 4: Translation performance with variable domain definitions. In the Split/Merge experiments, we report
BLEU differences for the related test set(s). Underline denotes significant loss when domains are changed wrt. the
baseline situation; bold for a significant improvement over FT-Full; (*) tags systems ignoring test domains.

ing domain tags during inference perform poorly,
significantly worse than the Mixed-Nat baseline
(Bleu=23.5).

5.2.2 Handling growing numbers of domains
Another set of experiments evaluate the ability to
dynamically handle supplementary domains (re-
quirement [P6-DYN]) as follows. Starting with
the existing MD systems of Section 5.1, we intro-
duce an extra domain (NEWS) and resume training
with this new mixture of data15 for 50,000 addi-
tional iterations. We contrast this approach with
training all systems from scratch and report differ-
ences in performance in Figure 1 (see also Table 7
in appendix B).16 We expect that MDMT systems
should not be too significantly impacted by the ad-
dition of a new domain and reach about the same
performance as when training with this domain
from scratch. From a practical viewpoint, dynam-
ically integrating new domains is straightforward
for DC-Tag, DC-Feat or TTM, for which new
domains merely add new labels. It is less easy
for DM, ADM and WDCMT, which include a built-
in domain classifier whose outputs have to be pre-
specified, or for LDR, FT-Res and MDL-Res for

based on the language model log-probability (assuming uni-
form domain priors). The domain classifier has an average
prediction error of 16.4% for in-domain data.

15The design of a proper balance between domains in train-
ing is critical for achieving optimal performance: as our goal
is to evaluate all systems in the same conditions, we consider
a basic mixing policy based on the new training distribution.
This is detrimental to the small domains, for which the “neg-
ative transfer” effect is stronger than for larger domains.

16WDCMT results are excluded from this table, as resum-
ing training proved difficult to implement.

which the number of possible domains is built in
the architecture and has to be anticipated from the
start. This makes a difference between domain-
bounded systems, for which the number of do-
mains is limited and truly open-domain systems.

We can first compare the results of cold-
start training with six or seven domains in Ta-
ble 7: a first observation is that the extra train-
ing data is hardly helping for most domains, ex-
cept for NEWS, where we see a large gain, and for
TALK. The picture is the same when one looks
at MDMTs, where only the weakest systems (DM,
ADM) seem to benefit from more (out-of-domain)
data. Comparing now the coldstart with the warm-
start scenario, we see that the former is always sig-
nificantly better for NEWS, as expected, and that
resuming training also negatively impacts the per-
formance for other domains. This happens no-
tably for DC-Tag, TTM and ADM. In this setting
MDL-Res and DM show the smaller average loss,
with the former achieving the best balance of train-
ing cost and average BLEU score.

5.3 Automatic domains

In this section, we experiment with automatic
domains, obtained by clustering sentences into
k = 30 classes using the k-means algorithm based
on generic sentence representations obtained via
mean pooling (cf. Section 4.1). This allows us to
evaluate requirement [P7-scale], training and test-
ing our systems as if these domains were fully sep-
arated. Many of these clusters are mere splits of
the large MED, while a fewer number of classes
are mixtures of two (or more) existing domains
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Figure 1: Ability to handle a new domain. We report BLEU scores for a complete training session with 7 domains,
as well as differences (in blue) with training with 6 domains (from Table 3); and (in red) differences with continual
training.

(full details are in Appendix C). We are thus in
a position to reiterate, at a larger scale, the mea-
surements of Section 5.2 and test whether multi-
domain systems can effectively take advantage
from the cross-domain similarities and to eventu-
ally perform better than fine-tuning. The results
in Table 5 also suggest that MDMT can surpass
fine-tuning for the smaller clusters; for the large
clusters, this is no longer true. The complete ta-
ble (in Appendix C) shows that this effect is more
visible for small subsets of the medical domain.

Finally, Table 6 reports the effect of using au-
tomatic domain for each of the 6 test sets: each
sentence was first assigned to an automatic class,
translated with the corresponding multi-domain
system with 30 classes; aggregate numbers were
then computed, and contrasted with the 6-domain
scenario. Results are clear and confirm previous
observations: even though some clusters are very
close, the net effect is a loss in performance for

almost all systems and conditions. In this set-
ting, the best MDMT in our pool (MDL-Res) is
no longer able to surpass the Mix-Nat baseline.

6 Related work

The multi-domain training regime is more the
norm than the exception for natural language pro-
cessing (Dredze and Crammer, 2008; Finkel and
Manning, 2009), and the design of multi-domain
systems has been proposed for many language
processing tasks. We focus here exclusively on
MD machine translation, keeping in mind that
similar problems and solutions (parameter shar-
ing, instance selection / weighting, adversarial
training, etc) have been studied in other contexts.

Multi-domain translation was already proposed
for statistical MT, either considering as we do mul-
tiple sources of training data (eg. (Banerjee et al.,
2010; Clark et al., 2012; Sennrich et al., 2013;
Huck et al., 2015)), or domains made of multiple



Model/ Train Mixed FT FT MDL DC DC
TTM ADM DM LDR

Clusters size Nat Full Res Res Feat Tag
10 small 29.3k 68.3 70.0 70.7 71.2 70.6 53.1 67.3 69.8 67.0 70.2
10 mid 104.7k 44.8 48.0 46.0 45.7 44.8 44.3 44.5 43.7 41.6 44.5
10 large 251.1k 50.4 52.9 52.0 51.3 49.6 43.2 49.1 48.5 44.3 49.5
Avg 128.4k 54.5 57.0 56.2 56.1 55.0 46.9 53.6 54.0 51.0 54.7

Table 5: BLEU scores computed by merging the 10 smaller, medium, and larger cluster test sets. Best score for
each group is in boldface. For the small clusters, full-fine tuning is outperformed by several MDMT systems - see
details in Appendix C.

Domain / Model MED LAW BANK TALK IT REL wAVG AVG

DC-Tag 38.5 54.0 49.0 33.6 42.2 76.7 41.6 49.0
DC-Feat 37.3 54.2 49.3 33.6 41.9 75.8 40.8 48.7
LDR 37.4 54.1 48.7 32.5 41.4 75.9 39.1 48.3
TTM 37.4 53.7 48.9 32.8 41.3 75.8 40.7 48.3
DM 35.4 49.3 45.2 29.7 37.1 60.0 37.8 42.8
ADM 36.1 53.5 48.0 32.0 41.1 72.1 39.5 47.1
FT-Res 37.5 55.7 51.1 33.1 44.1 86.7 41.6 51.4
MDL-Res 37.3 55.5 50.2 32.2 42.1 86.7 41.2 50.7
WDCMT 35.6 53.1 48.4 30.5 37.7 56.0 38.5 43.6

Table 6: Translation performance with automatic domains, computed with the original test sets. Significance tests
are for comparisons with the 6-domain scenario (Table 3).

topics (Eidelman et al., 2012; Hasler et al., 2014).
Two main strategies were considered: instance-
based, involving a measure of similarities between
train and test domains; feature-based, where do-
main/topic labels give rise to additional features.

The latter strategy has been widely used in
NMT: Kobus et al. (2017) inject an additional do-
main feature in their seq2seq model, either in the
form of an extra (initial) domain-token or in the
form of an additional domain-feature associated to
each word. These results are reproduced by Tars
and Fishel (2018), who also consider automati-
cally induced domain tags. This technique also
helps control the style of MT outputs in (Sennrich
et al., 2016a; Niu et al., 2018), and to encode the
source or target languages in multilingual MT (Fi-
rat et al., 2016; Johnson et al., 2017). Domain con-
trol can also be performed on the target side, as in
(Chen et al., 2016), where a topic vector describ-
ing the whole document serves as an extra context
in the softmax layer of the decoder. Such ideas are
further developed in (Chu and Dabre, 2018; Pham
et al., 2019), where domain differences and com-
monalties are encoded in the network architecture:
some parameters are shared across domains, while
others are domain-specific.

Techniques proposed by (Britz et al., 2017) aim
to ensure that domain information is actually used

in a mix-domain system. Three methods are con-
sidered, using either domain classification (or do-
main normalization, via adversarial training) on
the source or target side. There is no clear winner
in either of the three language pairs considered.
One contribution of this work is the idea of nor-
malizing representations through adversarial train-
ing, so as to make the mixture of heterogeneous
data more effective; representation normalization
has since proven a key ingredient in multilingual
transfer learning. The same basic techniques (pa-
rameter sharing, automatic domain identification /
normalization) are simultaneously at play in (Zeng
et al., 2018; Su et al., 2019): in this approach,
the lower layers of the MT use auxiliary classifi-
cation tasks to disentangle domain specific repre-
sentations on the one hand from domain-agnostic
representations on the other hand. These represen-
tations are then processed as two separate inputs,
then recombined to compute the translation.

Another parameter-sharing scheme is in (Jiang
et al., 2019), which augments a Transformer
model with domain-specific heads, whose contri-
butions are regulated at the word/position level:
some words have “generic” use and rely on mixed-
domain heads, while for some other words it is
preferable to use domain specific heads, thereby
reintroducing the idea of ensembling at the core



of (Huck et al., 2015; Saunders et al., 2019). The
results for three language pairs outperform several
standard baselines for a two-domain systems (in
fr:en and de:en) and a 4-domain system (zh:en).

Finally, Farajian et al. (2017b), Li et al. (2018)
and Xu et al. (2019) adopt a different strategy.
Each test sentence triggers the selection of a small
set of related instances; using these, a generic
NMT is tuned for some iterations, before deliv-
ering its output. This approach entirely dispenses
with the notion of domain and relies on data selec-
tion techniques to handle data heterogeneity.

7 Conclusion and outlook

In this study, we have carefully reconsidered the
idea of multi-domain machine translation, which
seems to be taken for granted in many recent stud-
ies. We have spelled out the various motivations
for building such systems and the associated ex-
pectations in terms of system performance. We
have then designed a series of requirements that
MDMT systems should meet, and proposed a se-
ries of associated test procedures. In our exper-
iments with a representative sample of MDMTs,
we have found that most requirements were hardly
met for our experimental conditions. If MDMT
systems are able to outperform the mixed-domain
baseline, at least for some domains, they all fall
short to match the performance of fine-tuning on
each individual domain, which remains the best
choice in multi-source single domain adaptation.
As expected however, MDMTs are less brittle than
fine-tuning when domain frontiers are uncertain,
and can, to a certain extend, dynamically accom-
modate additional domains, this being especially
easy for feature-based approaches. Our experi-
ments finally suggest that all methods show de-
creasing performance when the number of do-
mains or the diversity of the domain mixture in-
creases.

Two other main conclusions can be drawn from
this study: first, it seems that more work is needed
to make MDMT systems make the best out of
the variety of the available data, both to effec-
tively share what needs to be shared while at the
same time separating what needs to be kept sep-
arated. We notably see two areas worthy of fur-
ther explorations: the development of parameter
sharing strategies when the number of domains is
large; the design of training strategies that can ef-
fectively handle a change of the training mixture,

including an increase in the number of domains.
Both problems are of practical relevance in indus-
trial settings. Second, and maybe more impor-
tantly, there is a general need to adopt better eval-
uation methodologies for evaluating MDMT sys-
tems, which require systems developers to clearly
spell out the testing conditions and the associated
expected distribution of testing instances, and to
report more than comparisons with simple base-
lines on a fixed and known handful of domains.
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2020. Meta-learning for few-shot NMT adap-
tation. In Proceedings of the Fourth Workshop
on Neural Generation and Translation, pages
43–53, Online. Association for Computational
Linguistics.

Hidetoshi Shimodaira. 2000. Improving predic-
tive inference under covariate shift by weighting
the log-likelihood function. Journal of Statisti-
cal Planning and Inference, 90(2):227 – 244.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, Toma Erjavec, Dan Tufis, and
Dniel Varga. 2006. The JRC-Acquis: A mul-
tilingual aligned parallel corpus with 20+ lan-
guages. In Proceedings of the Fifth Interna-
tional Conference on Language Resources and
Evaluation, LREC’06, Genoa, Italy. European
Language Resources Association (ELRA).

Jinsong Su, Jiali Zeng, Jun Xie, Huating Wen,
Yongjing Yin, and Yang Liu. 2019. Exploring
discriminative word-level domain contexts for
multi-domain neural machine translation. IEEE
Transactions on Pattern Analysis and Machine
Intelligence (PAMI), pages 1–1.

Sander Tars and Mark Fishel. 2018. Multi-domain
neural machine translation. In Proceedings of
the 21st Annual Conference of the European
Association for Machine Translation, EAMT,
pages 259–269, Alicante, Spain. EAMT.

Jörg Tiedemann. 2009. News from OPUS -
A collection of multilingual parallel corpora

with tools and interfaces. In N. Nicolov,
K. Bontcheva, G. Angelova, and R. Mitkov,
editors, Recent Advances in Natural Language
Processing, volume V, pages 237–248. John
Benjamins, Amsterdam/Philadelphia, Borovets,
Bulgaria.

Jörg Tiedemann. 2012. Parallel data, tools and
interfaces in OPUS. In Proceedings of the
Eight International Conference on Language
Resources and Evaluation, LREC’12, Istanbul,
Turkey. European Language Resources Associ-
ation (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Sys-
tems 30, pages 5998–6008. Curran Associates,
Inc.

Jitao Xu, Josep Crego, and Jean Senellart. 2019.
Lexical micro-adaptation for neural machine
translation. In Proceedings of the 16th Inter-
national Workshop on Spoken Language Trans-
lation, IWSLT 2019, Hong Kong, China.

Jiali Zeng, Jinsong Su, Huating Wen, Yang Liu,
Jun Xie, Yongjing Yin, and Jianqiang Zhao.
2018. Multi-domain neural machine translation
with word-level domain context discrimination.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 447–457, Brussels, Belgium. Asso-
ciation for Computational Linguistics.

Jian Zhang, Liangyou Li, Andy Way, and Qun Liu.
2016. Topic-informed neural machine trans-
lation. In Proceedings of the 26th Interna-
tional Conference on Computational Linguis-
tics: Technical Papers, COLING 2016, pages
1807–1817, Osaka, Japan. The COLING 2016
Organizing Committee.

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/P13-1082
https://www.aclweb.org/anthology/P13-1082
https://www.aclweb.org/anthology/P13-1082
https://doi.org/10.18653/v1/2020.ngt-1.5
https://doi.org/10.18653/v1/2020.ngt-1.5
https://doi.org/10.1016/S0378-3758(00)00115-4
https://doi.org/10.1016/S0378-3758(00)00115-4
https://doi.org/10.1016/S0378-3758(00)00115-4
https://doi.org/10.1109/TPAMI.2019.2954406
https://doi.org/10.1109/TPAMI.2019.2954406
https://doi.org/10.1109/TPAMI.2019.2954406
https://arxiv.org/pdf/1805.02282.pdf
https://arxiv.org/pdf/1805.02282.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://zenodo.org/record/3524977
https://zenodo.org/record/3524977
http://aclweb.org/anthology/D18-1041
http://aclweb.org/anthology/D18-1041
http://aclweb.org/anthology/C16-1170
http://aclweb.org/anthology/C16-1170


Appendices

A - Description of multi-domain systems
We use the following setups for MDMT systems.

• Mixed-Nat, FT-full, TTM, DC-Tag use
a medium Transformer model of (Vaswani
et al., 2017) with the following settings: em-
beddings size and hidden layers size are
set to 512. Multi-head attention comprises
8 heads in each of the 6 layers; the in-
ner feedforward layer contains 2048 cells.
Training use a batch size of 12, 288 to-
kens; optimization uses Adam with parame-
ters β1 = 0.9, β2 = 0.98 and Noam decay
(warmup steps = 4000), and a dropout rate
of 0.1 for all layers.

• FT-Res and MDL-res use the same
medium Transformer and add residual layers
with a bottleneck dimension of size 1024.

• ADM, DM use medium Tranformer model and
a domain classifier composing of 3 dense lay-
ers of size 512 × 2048, 2048 × 2048 and
2048 × domain num. The two first layers
of the classifier use the ReLU() as activation
function, the last layer uses tanh() as activa-
tion function.

• DC-Feat uses medium Transformer model
and domain embeddings of size 4. Given a
sentence of domain i in a training batch, the
embedding of domain i is concatenated to the
embedding of each token in the sentence.

• LDR uses medium Transformer model and
for each token we introduce a LDR feature
of size 4 × domain num. Given a sen-
tence of domain i ∈ [1, ..,K] in the train-
ing batch, for each token of the sentence, the
LDR units of the indexes outside of the range
[4(i− 1), .., 4i− 1] are masked to 0, and the
masked LDR feature will be concatenated to
the embedding of the token. Details are in
(Pham et al., 2019).

• Mixed-Nat-RNN uses one bidirectional
LSTM layer in the encoder and one LSTM
layer in the decoder. The size of hidden lay-
ers is 1024, the size of word embeddings is
512.

• WDCNMT uses one bidirectional GRU layer in
the encoder and one GRU-conditional layer

in the decoder. The size of hidden layers is
1024, the size of word embeddings is 512.

Training For each domain, we create
train/dev/test sets by randomly splitting each
corpus. We maintain the size of validation sets
and of test sets equal to 1,000 lines for every
domain. The learning rate is set as in (Vaswani
et al., 2017). For the fine-tuning procedures used
for FT-full and FT-Res, we continue training
using the same learning rate schedule, continuing
the incrementation of the number of steps. All
other MDMT systems reported in Tables 3 and 4
use a combined validation set comprising 6,000
lines, obtained by merging the six development
sets. For the results in Table 7 we also append
the validation set of NEWS to the multi-domain
validation set. In any case, training stops if
either training reaches the maximum number of
iterations (50,000) or the score on the validation
set does not increase for three consecutive evalua-
tions. We average five checkpoints to get the final
model.

B - Experiments with continual learning
C - Experiments with automatic domains
This experiment aims to simulate with automatic
domains a scenario where the number of “do-
mains” is large and where some “domains” are
close and can effectively share information. Full
results in Table 8. Cluster size vary from approx-
imately 8k sentences (cluster 24) up to more than
350k sentences. More than 2/3 of these clusters
mostly comprise texts from one single domain, as
for cluster 12 which is predominantly MED, the re-
maining clusters typically mix 2 domains. Fine-
tuning with small domains is often outperformed
by other MDMT techniques, an issue that a better
regularization strategy might mitigate. Domain-
control (DC-Feat) is very effective for small do-
mains, but again less so in larger data conditions.
Among the MD models, approaches using residual
adapters have the best average performance.



Domain
Model

MED LAW BANK TALK IT REL NEWS wAVG AVG

Mixed-Nat 37.1 54.1 49.6 34.1 42.1 77.0 28.9 40.8 49.0
+0.2 | – +0.5 | — +0.5 | – -0.6 | – +1.1 | – +0.5 | – -5.4 | – +0.3 | – +0.4 | –

DC-Tag 37.7 54.5 49.9 34.8 43.9 78.8 29.5 41.4 49.9
+0.3 | +0.3 +0.8 | -0.1 -0.04 | -0.6 -1.6 | -1.1 -0.4 | -1.3 +1.7 | -3.5 -7.7 | -1.4 +0.2 | -0.1 +0.1 | -1.1

DC-Feat 37.4 54.9 50.0 34.7 43.9 79.6 28.9 41.2 50.1
+0.3 | -0.2 -0.1 | -0.1 -0.3 | -0.1 -1.3 | -0.6 -0.1 | -0.9 +0.4 | +0.3 -7.3 | -0.8 +0.1 | -0.2 -0.2 | -0.3

LDR 37.0 54.6 49.6 34.3 43.0 77.0 28.7 40.8 49.2
0.0 | -0.6 +0.1 | +0.5 +0.2 | -0.4 -0.4 | -0.6 +0.5 | +0.5 +2.9 | +3.8 -6.6 | -0.9 +0.6 | +0.5 +0.1 | -0.4

TTM 37.3 54.4 49.6 33.8 42.9 78.2 29.1 41.0 49.4
0.0 | -0.3 +0.4 | -0.3 -0.1 | -0.5 -0.9 | -1.1 +0.6 | -1.0 +1.8 | -4.0 -5.7 | -1.4 0.0 | -0.5 +0.3 | -1.2

DM 36.0 51.3 46.8 31.8 39.8 65.7 27.0 38.9 45.2
-0.4 | +0.6 -1.8 | +0.4 -1.2 | +0.6 -1.8 | -0.1 -2.6 | +0.5 -3.3 | 0.0 -4.4 | -1.2 -0.8 | +0.5 -1.8 | +0.3

ADM 36.6 54.2 49.1 32.9 42.1 75.7 28.7 40.2 48.4
-0.2 | +0.3 -0.7 | -0.8 -0.8 | -0.8 -0.9 | -0.2 -0.5 | -0.4 -2.3 | -5.0 -5.4 | -1.9 -0.5 | -0.2 -0.9 | -1.1

FT-Res 37.0 57.6 53.8 34.5 46.1 91.1 29.6 42.2 53.3
+0.3 | +0.3 +0.4 | +0.4 +0.1 | +0.1 -0.7 | -0.7 +0.5 | +0.5 -0.9 | -0.9 -9.0 | -0.6 -0.1 | -0.1 +0.2 | +0.2

MDL-Res 37.7 55.6 51.1 34.4 44.5 87.5 29.1 41.9 51.8
+0.2 | -0.2 +0.4 | +0.5 +0.1 | 0.0 -0.9 | -0.4 -0.1 | -0.2 +0.9 | -0.2 -8.0 | -0.8 +0.1 | -0.2 +0.1 | -0.1

Table 7: Ability to handle a new domain. We report BLEU scores for a complete training session with 7 domains, as
well as differences with (left) training with 6 domains (from Table 3); (right) continuous training mode. Averages
only take into account six domains (NEWS excluded). Underline denotes a significant loss, bold a significant gain.

Model size Mixed FT FT MDL DC DC
TTM ADM DM LDR

Cluster train / test Nat Full Res Res Feat Tag
24 [med] 8.1k / 3 90.4 90.4 90.4 90.4 100.0 65.6 100.0 90.4 100.0 100.0
13 [-] 17.3k / 52 67.6 75.4 74.3 74.3 75.0 54.7 74.7 75.9 65.9 76.9
28 [-] 25.6k / 54 71.6 68.7 68.1 70.2 71.0 42.5 72.0 71.3 65.6 72.6
19 [IT] 27.2k / 88 58.5 63.0 60.9 63.9 63.7 57.2 59.4 61.1 60.5 60.3
0 [-] 27.4k / 72 43.9 33.3 45.4 45.4 49.9 15.4 46.8 49.2 46.6 47.8
22 [-] 27.5k / 103 91.5 93.7 93.4 93.9 92.5 72.8 92.3 93.2 91.4 93.4
25 [-] 28.2k / 56 57.0 44.8 48.2 49.1 54.6 47.2 49.8 54.2 45.1 52.4
16 [med] 30.4k / 18 57.2 70.4 77.4 73.5 61.8 54.2 58.4 58.1 52.5 58.3
23 [med] 47.0k / 23 24.5 27.2 26.5 28.5 30.5 27.3 32.0 24.4 29.0 29.8
17 [med] 54.4k / 26 39.9 40.3 41.6 38.0 37.1 36.6 35.2 35.4 31.3 33.7
8 [IT] 61.4k / 214 46.9 53.1 55.8 53.6 48.9 45.1 48.8 50.9 43.0 46.7
1 [-] 68.1k / 122 47.2 47.5 48.7 45.1 46.8 39.1 45.4 44.2 40.7 44.9
7 [med] 91.5k / 30 41.3 35.5 41.4 39.9 41.4 36.5 37.3 37.1 40.7 41.8
11 [med] 93.0k / 38 31.6 42.6 31.8 35.4 36.0 29.6 36.7 32.7 26.5 36.6
29 [law] 109.2k / 242 65.9 69.2 67.6 67.7 66.0 63.8 65.1 64.7 62.4 65.9
27 [med] 109.3k / 49 11.0 9.6 8.7 9.2 10.0 19.4 9.4 7.9 10.7 10.6
5 [-] 109.9k / 267 46.3 47.4 46.9 45.4 44.0 42.9 43.7 44.3 40.9 45.7
6 [med] 133.4k / 73 37.2 38.9 38.7 36.8 37.5 27.5 38.0 37.2 31.3 35.9
26 [-] 134.8k / 428 31.8 30.8 31.8 31.2 31.9 32.6 32.2 30.5 29.6 31.2
15 [bank] 136.9k / 674 46.5 51.5 47.9 48.0 46.6 46.0 45.8 45.7 42.9 46.0
4 [rel] 137.4k / 1016 77.1 85.3 83.5 83.3 75.8 46.1 74.2 73.3 63.2 75.9
2 [med] 182.6k / 85 70.6 75.8 71.7 69.4 68.2 67.3 67.3 68.6 65.6 68.2
20 [med] 183.0k / 71 47.4 47.2 46.8 47.2 48.4 47.5 48.8 47.3 47.1 46.8
21 [-] 222.8k / 868 38.7 38.8 39.0 37.2 37.5 35.9 36.9 37.1 33.4 37.0
10 [med] 225.4k / 115 40.0 42.6 40.0 38.2 39.9 35.8 39.5 39.1 36.3 40.7
18 [med] 245.0k / 106 57.7 60.3 58.7 58.6 58.4 56.3 57.3 56.1 54.9 55.9
9 [med] 301.6k / 145 37.2 37.3 36.5 36.1 36.4 37.7 36.4 35.2 34.2 37.0
3 [law] 323.5k / 680 50.1 52.0 50.8 50.1 49.1 48.3 49.0 48.2 44.4 49.1
14 [med] 334.0 / 146 31.6 31.4 31.9 33.0 32.5 34.1 31.4 32.1 30.5 31.8
12 [med] 356.4k / 148 36.3 36.6 35.9 35.9 35.8 37.0 36.4 35.4 34.2 36.3

Table 8: Complete results for the experiments with automatic domains. For each cluster, we report: the majority
domain when one domain accounts for more than 75% of the class; training and test sizes; and BLEU scores
obtained with the various systems used in this study. Most test sets are too small to report significance tests.


