Journal article Open Access
MinhQuang Pham; Josep Crego; François Yvon
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>MinhQuang Pham</dc:creator> <dc:creator>Josep Crego</dc:creator> <dc:creator>François Yvon</dc:creator> <dc:date>2021-02-12</dc:date> <dc:description>When building machine translation systems, one often needs to make the best out of heterogeneous sets of parallel data in training, and to robustly handle inputs from un-expected domains in testing. This multi-domain scenario has attracted a lot of recent work, that fall under the general umbrella of transfer learning. In this study, we revisit multi-domain machine translation, with the aim to formulate the motivations for developing such systems and the associated expectations with respect to performance. Our experiments with a large sample of multi-domain systems show that most of these expectations are hardly met and suggest that further work is needed to better analyze the current behaviour of multi-domain systems and to make them fully hold their promises.</dc:description> <dc:identifier>https://zenodo.org/record/4537184</dc:identifier> <dc:identifier>10.5281/zenodo.4537184</dc:identifier> <dc:identifier>oai:zenodo.org:4537184</dc:identifier> <dc:language>eng</dc:language> <dc:relation>info:eu-repo/grantAgreement/EC/H2020/787061/</dc:relation> <dc:relation>doi:10.5281/zenodo.4537183</dc:relation> <dc:relation>url:https://zenodo.org/communities/787061</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:source>Transactions of the Association for Computational Linguistics 9</dc:source> <dc:subject>Neural Machine Translation</dc:subject> <dc:subject>Multi-domain MT</dc:subject> <dc:subject>Domain Adaptation</dc:subject> <dc:title>Revisiting Multi-Domain Machine Translation</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 42 | 42 |
Downloads | 25 | 25 |
Data volume | 7.1 MB | 7.1 MB |
Unique views | 29 | 29 |
Unique downloads | 23 | 23 |