Journal article Open Access

Revisiting Multi-Domain Machine Translation

MinhQuang Pham; Josep Crego; François Yvon


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/bdb72c2b-a896-4785-8e62-955eb94ce9e6/main-2327-PhamMinhQuang.pdf"
      }, 
      "checksum": "md5:c2db23c132297b90a385481171fff2c2", 
      "bucket": "bdb72c2b-a896-4785-8e62-955eb94ce9e6", 
      "key": "main-2327-PhamMinhQuang.pdf", 
      "type": "pdf", 
      "size": 284742
    }
  ], 
  "owners": [
    196497
  ], 
  "doi": "10.5281/zenodo.4537184", 
  "stats": {
    "version_unique_downloads": 23.0, 
    "unique_views": 29.0, 
    "views": 42.0, 
    "version_views": 42.0, 
    "unique_downloads": 23.0, 
    "version_unique_views": 29.0, 
    "volume": 7118550.0, 
    "version_downloads": 25.0, 
    "downloads": 25.0, 
    "version_volume": 7118550.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4537184", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4537183", 
    "bucket": "https://zenodo.org/api/files/bdb72c2b-a896-4785-8e62-955eb94ce9e6", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4537183.svg", 
    "html": "https://zenodo.org/record/4537184", 
    "latest_html": "https://zenodo.org/record/4537184", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4537184.svg", 
    "latest": "https://zenodo.org/api/records/4537184"
  }, 
  "conceptdoi": "10.5281/zenodo.4537183", 
  "created": "2021-02-12T10:39:44.763783+00:00", 
  "updated": "2021-02-14T08:12:11.832829+00:00", 
  "conceptrecid": "4537183", 
  "revision": 4, 
  "id": 4537184, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4537184", 
    "description": "<p>When building machine translation systems, one often needs to make the best out of heterogeneous sets of parallel data in training, and to robustly handle inputs from un-expected domains in testing. This multi-domain scenario has attracted a lot of recent work, that fall under the general umbrella of transfer learning. In this study, we revisit multi-domain machine translation, with the aim to formulate the motivations for developing such systems and the associated expectations with respect to performance. Our experiments with a large sample of multi-domain systems show that most of these expectations are hardly met and suggest that further work is needed to better analyze the current behaviour of multi-domain systems and to make them fully hold their promises.</p>", 
    "language": "eng", 
    "title": "Revisiting Multi-Domain Machine Translation", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "journal": {
      "volume": "9", 
      "title": "Transactions of the Association for Computational Linguistics"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4537183"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4537184"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "787061"
      }
    ], 
    "grants": [
      {
        "code": "787061", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::787061"
        }, 
        "title": "Advanced tools for fighting oNline Illegal TrAfficking", 
        "acronym": "ANITA", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Neural Machine Translation", 
      "Multi-domain MT", 
      "Domain Adaptation"
    ], 
    "publication_date": "2021-02-12", 
    "creators": [
      {
        "affiliation": "SYSTRAN, LIMSI/CNRS", 
        "name": "MinhQuang Pham"
      }, 
      {
        "affiliation": "SYSTRAN", 
        "name": "Josep Crego"
      }, 
      {
        "affiliation": "LIMSI/CNRS", 
        "name": "Fran\u00e7ois Yvon"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4537183", 
        "relation": "isVersionOf"
      }
    ]
  }
}
42
25
views
downloads
All versions This version
Views 4242
Downloads 2525
Data volume 7.1 MB7.1 MB
Unique views 2929
Unique downloads 2323

Share

Cite as