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Abstract – Using Landau’s theory of two-fluid hydrodynamics we investigate the sound modes
propagating in a uniform weakly interacting superfluid Bose gas for values of temperature up to
the critical point. In order to evaluate the relevant thermodynamic functions needed to solve
the hydrodynamic equations, including the temperature dependence of the superfluid density,
we use the Bogoliubov theory at low temperatures and the results of a perturbative approach
based on the Beliaev diagrammatic technique at higher temperatures. Special focus is given on
the hybridization phenomenon between first and second sound which occurs at low temperatures
of the order of the interaction energy and we discuss explicitly the behavior of the two sound
velocities near the hybridization point.
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Second sound is one of the most interesting manifesta-
tions of superfluidity. It is associated with the motion of
the fluid where its normal and superfluid components os-
cillate in opposite phase (for a recent discussion see [1]).
In superfluid helium, where it was first measured by
Peshkov [2], second sound is usually regarded as a tem-
perature (or entropy) wave and is distinct from first sound
which is basically a density wave. A major interest of sec-
ond sound is that it gives direct access to the superfluid
density [3], a quantity of high physical interest, vanish-
ing at the superfluid critical temperature. Recently the
measurement of second sound has been used to determine
experimentally the temperature dependence of the super-
fluid density in a strongly interacting atomic Fermi gas [4].
From a theoretical point of view the description of first and
second sound relies on Landau’s two-fluid hydrodynamic
equations of superfluidity [5]. Below the critical temper-
ature, with the appearance of a superfluid component in
the system, the macroscopic dynamics of the system is de-
scribed by coupled equations involving the normal and the
superfluid components. The peculiar nature of these equa-
tions arises, on the one hand, from the hydrodynamic na-
ture of the superfluid motion, strictly related to the phase
of the order parameter, and, on the other hand, from the

collisional regime characterizing the normal component.
In the linearized limit of small amplitude oscillations, the
two-fluid hydrodynamic equations take the form

∂2ρ

∂t2
= ∇2P, (1)

∂2s̃

∂t2
=

ρss̃
2

ρn
∇2T, (2)

where ρs and ρn (ρs + ρn = ρ = mn) are the densities of
the superfluid and normal components, s̃ is the entropy
density per unit mass and P is the pressure of the gas.

From eqs. (1), (2), one derives the following quartic
equation for the sound velocities (see, for example, [6]):

c4 −
(

∂P

∂ρ

∣∣∣∣
s̃

+
ρsT s̃2

ρnc̃v

)
c2 +

ρsT s̃2

ρnc̃v

∂P

∂ρ

∣∣∣∣
T

= 0, (3)

where c̃v is the specific heat per unit mass and (∂P/∂ρ)T

and (∂P/∂ρ)s̃ are the inverse isothermal and adiabatic
compressibilities, respectively. Equation (3) admits sim-
ple exact solutions at low T and close to the critical
temperature. In the first case, where all the thermody-
namic functions are fixed by the thermal excitation of
phonons, one can easily find Landau’s result c2

2 = c2
1/3
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where c1 =
√

(∂P/∂ρ)T=0 is here the T = 0 first-sound
velocity. Close to the critical temperature, where the
superfluid density vanishes in 3D systems, the second-
sound velocity instead tends to zero. In this limit one
can neglect, in eq. (3), the small c4 term as well as
the second term, proportional to ρs, in the parenthesis
multiplying c2. Then, using the thermodynamic relation
c̃p/c̃v = (∂P/∂ρ)s̃/(∂P/∂ρ)T , one gets the result

c2
2 =

ρsT s̃2

ρnc̃P
. (4)

In the same limit the first-sound velocity approaches the
usual expression

c2
1 =

(
∂P

∂ρ

)

s̃

. (5)

In systems characterized by a small value of the ther-
mal expansion coefficient, such as liquid 4He, the adiabatic
and isothermal compressibilities are nearly the same and
eq. (3) admits the very simple solutions c2

1 = (∂P/∂ρ) and
c2
2 = (ρsT s̃2)/(ρnc̃) holding for all temperatures below Tc

where the specific heat c̃ can be evaluated at either con-
stant volume or pressure.

A major question concerns the behavior of the second-
sound velocity at intermediate temperatures in dilute
gases. In superfluid Fermi gases with resonant interac-
tions the thermal expansion coefficient is still relatively
small and the formula (4) for the second-sound velocity
turns out to be accurate in a wide temperature interval. At
the same time the thermal expansion is still large enough
to show up in a detectable signal in the density fluctu-
ations associated with the propagation of second sound.
Thanks to this coupling it has been actually possible to
measure the velocity of second sound in Fermi gases inter-
acting with large values of the scattering length in highly
elongated configurations and to extract the temperature
dependence of the superfluid density [4,7].

Weakly interacting Bose gases behave in a very differ-
ent way due to their large isothermal compressibility. An
important consequence of this different behavior is the oc-
currence of a hybridization phenomenon between first and
second sound [8–11]. The mechanism is caused by the ten-
dency of the velocity of the two modes to cross at very low
temperatures, of the order of the T = 0 value of the chem-
ical potential µ(T = 0) = gn, where g = 4πh̄2a/m is the
bosonic coupling constant, with the consequent emergence
of a hybridization mechanism. For temperatures below
the hybridization point the velocity of the upper branch
approaches the Bogoliubov value cB =

√
gn/m, while the

lower branch approaches Landau’s result c2 =
√

gn/3m.
Above the hybridization point the roles of first and second
sound are inverted, in the sense that the second sound is
essentially an oscillation of the superfluid density which,
for temperatures significantly smaller than the critical
temperature, coincides with the density of the gas.

The main purpose of the present work is to exploit
in an explicit form the mechanism of hybridization,

providing an exact expression for the hybridization tem-
perature in the case of weakly interacting Bose gases
and to discuss the behavior of second sound both below
and above the hybridization point. For this purpose
we will use Bogoliubov theory to calculate the relevant
thermodynamic functions entering eq. (3) at low tem-
peratures (T ≪ Tc), in terms of the elementary ex-
citations of the gas, whose dispersion is given by the
famous Bogoliubov law ε(p) =

√
p2/2m (p2/2m + 2gn)

and which are thermally excited according to the bosonic
rule Np(ε) = (eε(p)/kT − 1)−1. Instead, at higher temper-
atures we will use the perturbation theory developed in
ref. [12] based on the Beliaev diagrammatic technique at
finite temperature [13]. In this approach thermal effects
in the Bogoliubov excitation spectrum are accounted for
through a self-consistent procedure. At low temperatures
this approach coincides with the Bogoliubov theory, ex-
cept for temperatures smaller than (na3)1/4gn, i.e. at
temperatures much smaller than the hybridization point.
At higher temperatures the theory of ref. [12] turns out
to be very accurate in dilute gases when compared with
exact Monte Carlo simulations. It follows that, at least for
small values of the gas parameter na3, the Bogoliubov the-
ory and the diagrammatic approach of ref. [12] match ex-
actly in the hybridization region of temperatures kT ∼ gn
and that the thermodynamic behavior of the gas is conse-
quently under control for all ranges of temperatures, both
below and above gn.

The coefficients of the quartic equation (3) depend not
only on the equilibrium thermodynamic functions, but
also on the normal and superfluid densities. The normal
density can be calculated using Landau’s prescription

ρn = −1

3

∫
dNp(ε)

dε
p2 dp

(2πh̄)3
(6)

in terms of the elementary excitations of the gas. Landau’s
prescription (6) ignores the interaction effects among ele-
mentary excitations and in a dilute Bose gas it is expected
to be very accurate except for temperatures close to the
critical point.

A peculiar property of the weakly interacting Bose gas is
that all the thermodynamic functions entering eq. (3), as
well as the normal density ρn, can be written in a rescaled
form as a function of the reduced temperature t̃ ≡ kT/gn
and of the reduced chemical potential η ≡ gn/kT 0

c , where

kT 0
c =

2πh̄2

m

(
n

ζ(3/2)

)2/3

(7)

is the critical temperature of the ideal Bose gas. In weakly
interacting Bose gases, T 0

c does not coincide with the ac-
tual critical temperature which contains a small correction
fixed by the value of the gas parameter na3:

Tc = T 0
c (1 + γ(na3)1/3) (8)

with γ ∼ 1.3 [14–16]. The reduced chemical potential
can also be expressed in terms of the gas parameter as
η = 2ζ(3/2)2/3(na3)1/3.
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Using the Bogoliubov theory, the free energy F = U −
TS can be written as

F

gnN
=

1

2

[
1 +

128

15
√

π
(na3)1/2

]

+
2t̃

ζ(3/2)
√

2π
η3/2

∫
∞

0

p̃2 ln
(
1 − e−

p̃

2t̃

√
p̃2+4

)
dp̃,

(9)

where we have defined p̃ = p/
√

mgn and, for complete-
ness, we have included the Lee-Huang-Yang correction to
the t = 0 value of the free energy (term proportional to
(na3)1/2).

The thermodynamic functions entering eq. (3) are
then easily calculated using the following thermodynamic
relations (ρ = mn):

s̃ = − 1

m

∂F/N

∂T

∣∣∣∣
ρ

, (10)

c̃v =
1

m

∂(F/N + mTs̃)

∂T

∣∣∣∣
ρ

, (11)

∂P

∂ρ

∣∣∣∣
s̃

=
∂P

∂ρ

∣∣∣∣
T

+
kT

ρ2c̃v

(
∂P

∂T

∣∣∣∣
ρ

)2

, (12)

where P = −(∂F/∂V )T is the pressure of the gas.
The normal density (6) instead takes the form

ρn

ρ
=

2

3ζ(3/2)t̃
√

2π
η3/2

∫
∞

0

p̃4ep̃
√

p̃2+4/2t̃

(
ep̃
√

p̃2+4/2t̃ − 1
)2 dp̃. (13)

The idea now is to calculate the two solutions of eq. (3)
for a fixed value of t̃ of the order of unity, taking the limit
η → 0. Physically this corresponds to considering very low
temperatures (of the order of gn) and very small values of
the gas parameter na3. For example, in the case of 87Rb,
the value of the scattering length is a = 100a0 (where
a0 is the Bohr radius) and typical values of the density
correspond to na3 ∼ 10−6. This corresponds to η ≈ 0.04
(see footnote 1).

Writing the solutions of eq. (3) in terms of the T = 0
Bogoliubov velocity cB =

√
gn/m, one finds that, as

η → 0, the two sound velocities only depend on the di-
mensionless parameter t̃ and are given by

⎧
⎨
⎩

c2
+ = c2

B ,

c2
−

= c2
Bf(t̃),

(14)

where f(t̃) = limη→0
ρT s̃2

ρnc̃v

m
gn . Using eqs. (9)–(13), one

actually finds that s̃ ∝ η3/2, c̃v ∝ η3/2 and ρn ∝ η3/2 and
that f is consequently a function of t̃, independently of η.

1Notice that such a value is significantly smaller than the ratio
µ(T = 0)/kTc evaluated in the presence of harmonic trapping with
the same value of the gas parameter na3 where n is the density in
the center of the trap [6].

Fig. 1: (Colour on-line) Sound velocities (light and dark blue)
computed by interpolating the Bogoliubov theory and the dia-
grammatic approach of ref. [12], over the whole range of tem-
peratures 0 < t̃ < t̃c. The gas parameter is chosen to be
na3 = 10−6. The critical point (see eq. (8)) corresponds to
t̃c = kTc/gn = 26.7. The inset shows the hybridization region.

In the η → 0 limit, the two velocities shown in fig. 1
cross each other at the value t̃hyb ≈ 0.6. At lower temper-
atures c2

−
approaches, as expected, the zero-temperature

value c2
B/3.

By considering finite, although small, values of η, it is
possible to show that, at the hybridization point, the two
branches exhibit a gap proportional to η3/4. The mech-
anism of hybridization, explicitly shown in the inset of
fig. 1, permits to identify an upper branch c1 (which co-
incides with c+ for t̃ < t̃hyb and with c− for t̃ > t̃hyb)
called “first sound”. The lower branch c2 (called “second
sound”) instead coincides with c− for t̃ < t̃hyb and with
c+ for t̃ > t̃hyb.

The validity of eq. (14) is limited to very low tempera-
tures where the thermal depletion of the condensate can
be ignored and the Bogoliubov theory can be safely ap-
plied. When the temperature starts being comparable
with the critical temperature Tc (corresponding to the
value t̃c = 26.7 in the case of fig. 1, where we have chosen
η = 0.04), the Bogoliubov theory is no longer applica-
ble. In fact at such temperatures the thermal depletion
of the condensate becomes important and the Bogoliubov
expression for the dispersion law is inadequate. The super-
fluid density fraction, calculated according to eq. (13) with
the T = 0 value of the Bogoliubov dispersion law, vanishes
at T ∼ 1.2Tc, well above the critical temperature (8), fur-
ther revealing the inadequacy of the theory at high tem-
peratures. As anticipated above, a better approach to be
used at temperatures of the order of the critical value is
the diagrammatic approach of ref. [12] whose predictions
for the first- and second-sound velocities at temperatures
higher than the hybridization temperature are reported in
fig. 1 and which properly interpolates with the predictions
of the Bogoliubov theory near the hybridization point.

For temperatures significantly higher than the hy-
bridization temperature, an accurate and elegant ex-
pression for the second-sound velocity is obtained by
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Fig. 2: (Colour on-line) Superfluid density computed using the
ideal Bose gas model (orange curve), the Bogoliubov theory
(blue curve) and the diagrammatic approach of ref. [12] (green
curve). The black dots correspond to Monte Carlo simulations.
The parameters are chosen as in fig. 1.

evaluating all the quantities entering the quartic equa-
tion (3), except for the isothermal compressibility and
the superfluid density, using the ideal Bose gas model.
One can actually show that the adiabatic compressibility,
the specific heat at constant volume and the entropy den-
sity deviate very little from the ideal Bose gas predictions
in a wide interval of temperatures above the hybridiza-
tion point. This simplifies significantly the calculation of
eq. (3). In fact in the ideal Bose gas model one finds the
simple result

(
∂P

∂ρ

)

es

+
ρsT s̃2

ρnC̃v

=
ρT s̃2

ρnC̃v

(15)

for the coefficient of the c2 term. It is now easy to derive
the two solutions satisfying the condition c1 ≫ c2 . To
obtain the larger velocity c1 one can neglect the last term
in (3). Using the thermodynamic relations of the ideal
Bose gas model and identifying the normal density with
the thermal density (ρn = mnT = mNT /V ) one obtains
the prediction

c2
1 =

5

3

g5/2

g3/2

kBT

m
(16)

for the first-sound velocity (see ref. [8]). To calculate c2 we
must instead neglect the c4 term in (3) and using eq. (15)
one finds the useful result

c2
2 =

ρs

ρ

(
∂P

∂ρ

)

T

(17)

revealing that the superfluid density and the isothermal
compressibility are the crucial parameters determining the
value of the second-sound velocity of weakly interacting
Bose gases for T ≫ gn. In the relevant region 10 ≤ t̃ ≤ 25
of the reduced temperature, the expression (17) for the
second-sound velocity deviates from the exact solution of
the two-fluid hydrodynamic equation reported in fig. 1 by
less than 7 percent.

Fig. 3: (Colour on-line) Isothermal compressibility
(ρ ∂P/∂ρ|T )−1 computed using the Bogoliubov model
(blue curve) and the diagrammatic approach of ref. [12] (green
curve). The parameters are chosen as in fig. 1.

In fig. 2 we show the temperature dependence of the su-
perfluid density predicted by the diagrammatic approach
of ref. [12] compared with the predictions of the Bogoli-
ubov theory, the results of quantum Monte Carlo simula-
tions as well as the ideal Bose gas value ρ(1− (T/T 0

c )3/2).
Notice that the diagrammatic approach of ref. [12] pre-
dicts an unphysical jump of the superfluid density at the
transition point and that critical fluctuation terms should
be taken into account for a correct description near Tc.
It is also worth discussing the behavior of the isothermal
compressibility (see fig. 3), a quantity of high interest near
phase transitions. The diagrammatic approach of ref. [12],
which at high temperatures approaches the Hartree-Fock
theory, predicts an increase of the isothermal compressibil-
ity (ρ ∂P/∂ρ|T )−1 with respect to its T = 0 value (gn)−1

and a divergent behavior near the critical temperature,
which is a typical feature of mean-field theories. The in-
clusion of critical fluctuations will modify this behavior
near the critical point. To our knowledge, the isothermal
compressibility near the critical point of dilute Bose gases
has not yet been accurately calculated nor measured. This
contrasts with resonant Fermi gases whose recent measure-
ment [17] was actually employed to identify experimentally
the value of the critical temperature.

In fig. 4, we finally show the ratio (δn/n)/(δT/T )
between the relative density and temperature variations
calculated for the first- and second-sound solutions of
eq. (3) as a function of temperature. This quantity repre-
sents an important characterization of the two branches.
It is in fact well known that sound in an ideal classical
gas is an adiabatic oscillation characterized by the value
3/2 for the ratio (δn/n)/(δT/T ). For the upper solution
of the hydrodynamic equations (first sound), this ratio
is positive over the full range of temperatures below the
transition and its value increases with T , getting close to
unity near the transition. The most important feature
emerging from fig. 4 is that the ratio between the rela-
tive density and temperature changes associated with the
second-sound solution, has an opposite sign and a much
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Fig. 4: (Colour on-line) Ratio (δn/n) × (t̃/δt̃) for the lower
branch (light blue) and the upper branch (dark blue). The
parameters are chosen as in fig. 1.

larger value in modulus, reflecting that second sound,
for temperatures higher than the hybridization value, is
dominated by the fluctuations of the density, rather than
by the ones of the temperature. This important fea-
ture is also revealed by the fact that, in the same range
of temperatures, second sound practically exhausts the
compressibility sum rule [6],

(ρ ∂P/∂ρ|T )−1 =
2

N

∫
dωS(q, ω)/ω, (18)

where S(q, ω) is the dynamic structure factor, a quantity
which can be easily calculated within the two-fluid model
described by Landau’s theory [18]. The fact that the com-
pressibility sum rule (18) is strongly affected by second
sound is a remarkable feature exhibited by the weakly in-
teracting Bose gas above the hybridization point which
distinguishes it in a profound way with respect to the case
of strongly interacting superfluids, like 4He or the Fermi
gas at unitarity, where the density fluctuations associated
with second sound are instead always very small.

From an experimental point of view this result also re-
veals that second sound is much more easily accessible
than first sound in dilute Bose gases, being very sensi-
tive to the coupling with a density probe, as confirmed
by its experimental identification in the experiment of
ref. [19]. It is finally worth noticing that the fact that
second sound in a Bose gas can be easily excited through
a density probe is not specific to the 3D case. Indeed,
a similar behavior takes place also in 2D Bose gases [20]
where its measurement could provide an efficient determi-
nation of the superfluid density, including its discontinuity
at the Berezinski-Kosterlitz-Thouless transition. Probing
directly the hybridization mechanism between first and
second sound is a more difficult experimental task because
of the extremely low temperatures required to observe the
coupling between the two modes. The achievement of
the hybridization could be detected by the observation of
two sound waves excited by the same density perturbation

and propagating with relatively close, but distinct veloci-
ties. An alternative perspective is provided by the study
of the hybridization exhibited by the frequencies of the
discretized modes of a harmonically trapped gas at finite
temperature, as discussed in [10].
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