Conference paper Open Access

Services Computing for Cyber-Threat Intelligence: The ANITA Approach

Daniel De Pascale; Giuseppe Cascavilla; Damian Andrew Tamburri; Willem-Jan van den Heuvel


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4534163</identifier>
  <creators>
    <creator>
      <creatorName>Daniel De Pascale</creatorName>
      <affiliation>tilburg university</affiliation>
    </creator>
    <creator>
      <creatorName>Giuseppe Cascavilla</creatorName>
      <affiliation>Tu/e - JADS</affiliation>
    </creator>
    <creator>
      <creatorName>Damian Andrew Tamburri</creatorName>
      <affiliation>Tu/e - JADS</affiliation>
    </creator>
    <creator>
      <creatorName>Willem-Jan van den Heuvel</creatorName>
      <affiliation>tilburg university</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Services Computing for Cyber-Threat Intelligence: The ANITA Approach</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-02-17</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4534163</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4534162</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/787061</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Major cybersecurity and threat intelligence analysts agree that online criminal activity is increasing exponentially. Technologies, newspapers, the internet, and social media made the dark web an accessible place to almost everyone. The ease of accessing the dark side of the web makes the problem more critical than ever. For this reason, the European Union financed the ANITA project, consisting of different tools for monitoring and fighting illegal criminal activities on the Dark Web. In the ANITA project, we propose different Big Data analytic tools for the analysis of all data extracted from illegal marketplaces. In this survey paper we present our developed tools for detecting trends and analyzing the incoming information with respect to illegal trafficking. The tool extracts information about specific trends, analytics and produces actionable insight on buying and transaction habits and user behaviors. The tool extracts statistics in order to support and guide investigators and law enforcement agencies for the detection of criminal activities.&amp;nbsp;&lt;/p&gt;</description>
    <description descriptionType="Other">not available online yet. Here the list of papers accepted https://esocc-conf.eu/index.php/accepted-papers/

grant "PRoTECT" under grant Nno. 815356.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/787061/">787061</awardNumber>
      <awardTitle>Advanced tools for fighting oNline Illegal TrAfficking</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
41
25
views
downloads
All versions This version
Views 4141
Downloads 2525
Data volume 8.5 MB8.5 MB
Unique views 3131
Unique downloads 2323

Share

Cite as