There is a newer version of this record available.

Conference paper Open Access

Counterterrorism for Cyber-Physical Spaces: A Computer Vision Approach

Cascavilla Giuseppe; Johann Slabber; Fabio Palomba; Dario Di Nucci; Damian A. Tamburri; Willem-Jan van den Heuvel


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210312102128.0</controlfield>
  <controlfield tag="001">4534150</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tilburg university - JADS</subfield>
    <subfield code="a">Johann Slabber</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">SeSa Lab - University of Salerno Salerno, Italy</subfield>
    <subfield code="a">Fabio Palomba</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tilburg University Den Bosch</subfield>
    <subfield code="a">Dario Di Nucci</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">TU/e - JADS</subfield>
    <subfield code="a">Damian A. Tamburri</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tilburg University Den Bosch</subfield>
    <subfield code="a">Willem-Jan van den Heuvel</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">7520100</subfield>
    <subfield code="z">md5:572efa8c23bc8cdee8f031522ac96f4d</subfield>
    <subfield code="u">https://zenodo.org/record/4534150/files/AVI_2020_conference.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-09-28</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-787061</subfield>
    <subfield code="o">oai:zenodo.org:4534150</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">TU/e - JADS</subfield>
    <subfield code="a">Cascavilla Giuseppe</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Counterterrorism for Cyber-Physical Spaces: A Computer Vision Approach</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-787061</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">787061</subfield>
    <subfield code="a">Advanced tools for fighting oNline Illegal TrAfficking</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Simulating terrorist scenarios in cyber-physical spaces---that is, urban open or (semi-) closed spaces combined with cyber-physical systems counterparts---is challenging given the context and variables therein. This paper addresses the aforementioned issue with ALTer a framework featuring computer vision and Generative Adversarial Neural Networks (GANs) over terrorist scenarios. We obtained the data for the terrorist scenarios by creating a synthetic dataset, exploiting the Grand Theft Auto V (GTAV) videogame, and the Unreal Game Engine behind it, in combination with OpenStreetMap data. The results of the proposed approach show its feasibility to predict criminal activities in cyber-physical spaces. Moreover, the usage of our synthetic scenarios elicited from GTAV is promising in building datasets for cybersecurity and Cyber-Threat Intelligence (CTI) featuring simulated video gaming platforms. We learned that local authorities can simulate terrorist scenarios for their cities based on previous or related reference and this helps them in 3 ways: (1) better determine the necessary security measures; (2) better use the expertise of the authorities; (3) refine preparedness scenarios and drills for sensitive areas.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4534149</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4534150</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
47
26
views
downloads
All versions This version
Views 472
Downloads 262
Data volume 195.7 MB15.0 MB
Unique views 382
Unique downloads 242

Share

Cite as