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Abstract: More than 75% of Internet traffic is now encrypted, and this percentage is constantly
increasing. The majority of communications are secured using common encryption protocols such as
SSL/TLS and IPsec to ensure security and protect the privacy of Internet users. However, encryption
can be exploited to hide malicious activities, camouflaged into normal network traffic. Traditionally,
network traffic inspection is based on techniques like deep packet inspection (DPI). Common applica-
tions for DPI include but are not limited to firewalls, intrusion detection and prevention systems, L7
filtering, and packet forwarding. With the widespread adoption of network encryption though, DPI
tools that rely on packet payload content are becoming less effective, demanding the development of
more sophisticated techniques in order to adapt to current network encryption trends. In this work,
we present HeaderHunter, a fast signature-based intrusion detection system even for encrypted
network traffic. We generate signatures using only network packet metadata extracted from packet
headers. In addition, we examine the processing acceleration of the intrusion detection engine using
different heterogeneous hardware architectures.

Keywords: network intrusion detection; encrypted network traffic; encrypted network traffic inspec-
tion; network packet metadata; GPGPUs; integrated GPU; OpenCL

1. Introduction

The adoption of common encryption protocols—such as SSL/TSL and IPsec—has
been recently growing, aiming towards the protection of network communication channels.
Statistics report that, currently, more than 75% of the Internet traffic is encrypted, while
this percentage is constantly rising [1,2]. Although this practice is crucial for the protection
of end-users and services, it introduces new challenges for Internet traffic analysis and
monitoring tools, which mostly rely on techniques like deep packet inspection (DPI). DPI is
based on pattern matching, which enables searching for specific content inside the network
traffic. Common applications for DPI include firewalls, intrusion detection and prevention
systems, L7 filtering, and packet forwarding [3,4]. However, with the widespread adoption
of network encryption protocols, solutions that rely on scanning packet payload contents
are becoming less effective and new approaches have to be implemented in order to ensure
their correct operation. Existing DPI solutions extract mostly coarse-grained information
when operating on encrypted network traffic. Thus, it is important to adapt to current
encryption trends to analyze fully encrypted network connections.

An approach to inspect encrypted network traffic is the generation of signatures based
on packet metadata, such as the packet timestamp, size, and direction. These metadata
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can be usable even in encrypted traffic, since they can be easily extracted from packet
headers. Recent related work has proven that revealing the traffic nature in encrypted
communication channels is feasible using machine learning techniques either for network
analytics, network security, privacy, or fingerprinting. More specifically, such works focus
on investigating which network related characteristics reveal the nature of the network
traffic. As it occurs, we can divide the resulted network-related characteristics that make
traffic classification feasible—even in encrypted networks—into three groups: (i) time-
related, (ii) packet-related, and (iii) statistical characteristics [5–7]. Based on the outcomes of
those works, we build signatures from the most descriptive and revealing packet metadata
categories; the sequence of packet payload lengths (ordered by the time the arrive at the
network interface) and the packet direction. In this work, we focus on signature-based
intrusion detection, and we process only network packet headers.

In addition, to cope with the ever increasing network speeds, we investigate the
utilization of commodity hardware accelerators, such as GPUs, for high performance
intrusion detection against network traffic. The benefits for such an implementation is
the high processing throughput, as well as the low cost of powerful commodity high-
end off-the-shelf GPUs (in contrast to expensive server setups). Since GPUs offer stream
processing, real-time traffic inspection can be achieved [8–12]. Fast metadata matching can
enhance the implementation of numerous applications tailored for encrypted networks,
such as traffic monitoring and firewalls. Such system can be utilized by service providers
for analytics and measurements in order to ensure quality of service for their clients.
Our signatures that are extracted through an offline analysis phase are compiled into an
Aho–Corasick automaton that enables simultaneous multi-pattern matching. The incoming
network traffic is grouped into batches and then transferred to the device memory space.
Our engine is able to report suspicious behavior during the pattern matching period against
the incoming network traffic.

A high-level overview of this work is presented in Figure 1. This work can be divided
into two parts—the offline and the online phase. In the offline phase, we firstly collect
and process the ground truth samples. The ground-truth samples used for this work are
collected from the publicly available dataset UNSW-NB 15 [13]. The generated signatures
are compiled into an Aho–Corasick automaton. In Section 3, we discuss the details of the
automaton implementation. In the online phase, our system processes the input traffic and
inspects the flows contained, reporting suspicious activity, based on the signatures. Details
on the implementation of our signature-based intrusion detection engine are discussed in
Section 3.

Offline phase

Online phase

Ground-truth traffic 
samples collection Signatures generation

Incoming traffic 
collection Traffic inspection Intrusion detection 

reporting

Automaton compilation

Figure 1. A high-level design overview of this work. In the offline phase, we (i) process the ground-
truth dataset retrieved from [13], (ii) we generate signatures, and (iii) we build the automaton. In
the online phase, we process the input traffic using our intrusion detection engine that reports any
suspicious activity identified by our signatures.

The contributions of this work are the following: (This is an extended version of
the paper “Head (er) Hunter: Fast Intrusion Detection using Packet Metadata Signa-
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tures” [14] that was published in the proceedings of the 2020 IEEE 25th International
Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD)):

• We generate signatures for intrusion detection using strictly packet metadata ex-
tracted from packet headers, making our engine suitable for encrypted network traffic.
More specifically, we focus on packet payload size and packet direction.

• Aiming to advance the state-of-the-art, we propose and present the implementation
of a signature-based intrusion detection engine tailored for packet metadata and not
packet contents. Current state-of-the-art techniques examine only the feasibility of
classifying traffic using packet metadata, without offering a real traffic inspection
engine implementation.

• We evaluate our work in two parts: the (i) signature quality and (ii) pattern matching
engine performance. Current state-of-the-art techniques examine only the accuracy of
the proposed analysis techniques.

• We extend the most popular string searching algorithm, Aho–Corasick, to also support
integers, for packet metadata matching. To improve the processing throughput of the
intrusion detection engine, we use off-the-shelf GPUs and a commodity CPU.

2. Encrypted Traffic Signatures

In this section, we present the signature generation procedure. More specifically, we
discuss our signature generation methodology, and then we detail the procedure of the
ground-truth dataset manipulation that we followed to produce the signatures.

2.1. Encrypted Traffic Signature Generation

After the examination of the literature and during our analysis, we observed that spe-
cific sequences of packet payload sizes reliably signify certain malicious activity. Indeed, if
we illustrate packet traces that contain different events, we can easily notice the diversity
that appears in packet size sequences (Figures 2 and 3). Thus, network packet size is a very
important feature that, if properly handled, can offer important insights for the nature of
the underlying network traffic.
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Figure 2. Illustration of packet payload size sequences within a network traffic capture of a file
scanning attempt.

In this work, we aim for an expressive yet simple enough signature format to facilitate
the automated generation of signatures. Another consideration for a practical system is
to minimize the amount of state information that a deep packet inspection engine needs
to maintain per flow in order to evaluate patterns across packet sequences in the same
flow. The advantage of our solution is that it can be implemented with an automaton,
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without the need to retain previously observed packet sizes so as to support backtracking,
and that it is expressive enough to capture the traffic metadata of interest. As already
mentioned, we do not parse and we do not process any network packet payloads—we
only focus on packet headers. This means that the only information that we have available
is contained inside a packet header. In addition, we aim to avoid adding any complexity
in the signature specification procedure and, thus, we decide to utilize only the following
fields for each network packet: (i) source IP address, (ii) source port, (iii) destination IP
address, (iv) destination port, (v) protocol, (vi) payload size, and (vii) packet timestamp.
Afterwards, for each one of these network flows, we produce a sequence of metadata;
(i) packet payload sizes and (ii) packet directions. Some examples of packet payload-size
sequences that are used as signatures can be found in Table 1.

Figure 3. Illustration of packet payload size sequences within a network traffic capture of a login
attempt to a web server.

Table 1. Simple signature formats.

Direction Signature Specification

Src→ Dst 64,100,109,109,109,5

Src↔ Dst 64,−0,100,−100,109,−30,109,...

The second signature in Table 1 contains negative values. The sign of each number
shows the direction of the packet when we produce signatures for bi-directional network
connections. More specifically, a packet payload size with a negative sign indicates that
the packet is received and not transmitted. This is a technique to add extra expressiveness
on the signatures. To build the signatures, we use a fraction of the network packet traces
dataset. More specifically, we build a single signature per record. This signature represents
the actual sequence of packet payload sizes and has one of the two formats that we
presented in the previous paragraph (i.e., with or without the sign).

To allow a more flexible format, we introduce a regular-expression-like format to
present the signatures (Table 2). Our proposal can be extended for additional expres-
siveness, for example by adding other regular expression constructs such as groups or
disjunctions. In this work, we kept the signature format complexity to a minimum to
avoid complicating the signature generation process as well as the automaton creation.
Disjunction, in particular, is handled by providing a disjunctive set of rules, instead of
extending the language syntax with an embedded disjunctive operator. The downside is
that a larger set of patterns may be required; however, we did not find this to be a problem
in practice. Having retransmitted packets is an unpredictable network behavior, so we
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might lose a reporting solely due to a not properly defined upper bound in the repeat range
of an expression. Thus, we choose to handle retransmitted TCP packets by discarding them
in a packet filtering phase.

Table 2. Regular-expression-like signature formats.

Direction Signature Specification

Src→ Dst 64–69,100,109{2–3},5

Src↔ Dst 64–69,−0,100,−100,109,−30,109,...

Fine-Grained Signatures

The network traffic ground-truth samples that we use to build our signatures provide
fine-grained labels, which, apart from classifying a network flow into the two categories
“benign” and “attack”, also distinguish the attacks into categories (e.g., DoS, reconnaissance).
Thus, we use this fine-grained information offered through the ground-truth dataset in
order to build signatures that will further point to the most probable attack type, besides
solely classifying the network flow as malicious or not. In Section 4, we discuss the quality
of the generated signatures with respect to their attack type.

2.2. Ground-Truth Dataset Manipulation

The first step to generate effective signatures is the analysis of a ground-truth dataset.
For the purpose of this work, we utilize publicly available datasets (i.e., [15]) that contain
network traces originated from malicious activities and, most importantly, these datasets
are labeled and classified according to the attack type. As we discuss in the following
paragraphs, this enables us to produce signatures able to report suspicious network flows
in a fine-grained manner.

More specifically, in the dataset that we use, each record that represents a single
attack contains a number of attributes. Some of these attributes are presented in Table 3.
However, these attributes include only coarse-grained information that describe every
network flow in the original dataset. In this work, we aim to build signatures based on
packet-level information—something that is partially provided by these attributes. Thus,
we use only a subset of these attributes that will eventually enable us to locate the actual net-
work traffic flows inside the traffic traces that are also publicly available (in a .pcap format).
As already mentioned, using a fraction of the attributes, we map every network flow to an
attack type. More specifically, each network flow is characterized by the typical 5-tuple
“source IP address, source port, destination IP address, destination port, protocol” combined by
the two timestamps that indicate (i) the start and (ii) the termination of each connection.
Then, we group these network flows by the attack type. Finally, a single record in our
processed dataset is formatted as such: “Attack Record 1: 1421927416, 1421927419,
175.45.176.2, 149.171.126.16, 23357, 80, TCP, Exploits”, where 1421927416 is the
first packet timestamp captured, 1421927419 is the last packet timestamp captured,
175.45.176.2 is the source IP address, 149.171.126.16 is the destination IP address,
23357 is the source port number, 80 is the destination port number, TCP is the connection
protocol and, finally, Exploits is the attack category. Then, for each one of the records, we
extract the whole network packet trace from the traffic, similar to a network flow.

Figure 4 displays a high-level overview of the signature generation procedure that
we follow. As previously mentioned, we break the raw network traffic traces into flows.
Each flow is characterized by the corresponding label that occurs from the ground-truth
records (i.e., benign or malicious flow). After having divided the resulted network flows
into the two categories, we divide the malicious network flows into two sets, the one that
contains the malicious network flows that will be used for testing (60% randomly selected
flows) and the one that contains the malicious network flows that will be used to produce
our signatures (40% randomly selected flows).
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Table 3. A subset of the attributes and their descriptions that characterize a single attack record in
the dataset [15].

Name Description

srcip Source IP address

sport Source port number

dstip Destination IP address

dsport Destination port number

proto Transaction protocol

state Protocol state

dur Record total duration

sbytes Source to destination bytes sent

dbytes Destination to source bytes sent

service e.g., http, ftp, smtp, ssh, dns

sload Source bits per second

dload Destination bits per second

spkts Source to destination packet count

dpkts Destination to source packet count

attack_cat Name of attack

label 0 for benign, 1 for attack records

Flows

Benign flows

Malicious flowsGround-truth 
labels

Raw packet 
traces

Test flows

Train flows

Test flows

Signatures

Figure 4. Overview of the signature generation procedure. The traffic traces are arranged into
network flows. Each flow is marked as malicious or benign, according to the ground-truth labels.
Malicious flows are further divided into two sets; the first set is used for testing and the second set is
used for signature generation.

3. Intrusion Detection Engine

The second part of our solution is the implementation of the intrusion detection
engine. Our intrusion detection system is signature-based. This means that every report of
suspicious network flow is produced only when one, or more, of the predefined signatures
is found inside the network traffic. The main process of signature-based systems is pattern
matching. Inspired by one of the most popular algorithms for fast string pattern matching,
called Aho–Corasick [16], our extended implementation operates on packet sizes, which
are represented as short integers, instead of a typical Aho–Corasick implementation that
operates on packet payloads, which are represented as strings. In the rest of this section,
we describe the implementation details of our intrusion detection system.
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3.1. Automaton

The Aho–Corasick algorithm is an efficient string searching algorithm that matches
the elements of a finite set of strings against an input. It is able to match all pattern strings
simultaneously, so its complexity does not depend on the size of the pattern set. It works
by constructing an automaton that executes transitions for each 8-bit ASCII character of
the input text. Since we aim to adapt the algorithm to match signatures that describe
sequences of packet payload sizes, we replace the 8-bit characters with 16-bit values
that represent packet sizes, similar to [6]. The algorithm builds a finite state machine,
resembling a trie with added “failure” links between the trie nodes. These failure links are
followed when there is no remaining matching transition, and they offer fast transitions
to other branches of the trie that share a common prefix, without the need for expensive
backtracking using earlier inputs. This way, the algorithm allows the interleaving of a
large number of concurrent searches, such as in the case of network connections because
the state of the matcher can be preserved across input data that are observed at different
points in a time period by storing a pointer to the current state of the automaton, with
the state maintained for each connection. Otherwise, backtracking would require the
maintenance of expensive per-flow state for previously-seen packet payload sizes. In order
to boost the resulted performance, we build a Deterministic Finite Automaton (DFA) by
unrolling the failure links in advance, adding them as additional transitions directly to the
appropriate node. This optimization may expand the size of the automaton; however, it
offers substantial performance speedup when a large number of signatures is compiled to
a single automaton. In Section 4.2, we present the automaton creation time as well as the
automaton size according to the number of signatures and their size.

3.2. Implementing with OpenCL

To uniformly execute the pattern matching engine across every device in our testbed
machine (i.e., the main processor Intel i7-8700K, a high-end discrete NVIDIA GTX 980
GPU (NVIDIA, Santa Clara, CA, USA) and an Intel UHD Graphics 630 integrated GPU
(Intel, Santa Clara, CA, USA)), we utilize the OpenCL framework. Our testbed system
runs Arch Linux 4.19.34-1-lts, and we use the Intel OpenCL 2.1 SDK for the Intel devices
(i.e., the UHD Graphics 630 GPU and the Intel i7-8700K CPU) and the OpenCL SDK
from the NVIDIA CUDA Toolkit 10.2.120 for the NVIDIA GTX 980 GPU. In OpenCL, an
instance of a given code block and a thread that executes it is called work-item, and a set of
multiple work-items is called work-group. Different work-groups can run concurrently on
different hardware cores. Typically, GPUs contain a significantly faster thread scheduler,
thus it is recommended to spawn a large number of work-groups, since it hides the latency
that is introduced by heavy memory transfers through the PCIe bus. While a group
of threads waits for data consumption, another group can be scheduled for execution.
On the other hand, CPUs perform more efficiently when the number of work-groups
is close to the number of the available cores. When executing compute kernels on the
discrete GPU, the first thing to consider is how to transfer the data to and from the device.
Discrete, high-end GPUs have a dedicated memory space, physically independent from the
main memory. To execute a task on the GPU, we must explicitly transfer the data between
the host (i.e., DRAM) and the device (i.e., GPU DRAM). Data transfers are performed via
DMA, so the host memory region should be page-locked to prevent any page swapping
during the time that transfers take place. In OpenCL, a data buffer, which is required for
the execution of a computing kernel, has to be created and associated with a specific context.
Different contexts cannot share data directly. Thus, we have to explicitly copy the received
network packets to a separate page-locked buffer that has been allocated from the context
of the discrete GPU and can be moved towards its memory space via PCIe. Data transfers
(host→ device→ host) and GPU execution are performed asynchronously, permitting
a pipeline of computation and communication, something that significantly improves
parallelism. Moreover, when the processing is performed on an integrated GPU, expensive
data transfers are not required, since both devices have direct access to the host memory.
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To avoid redundant copies, we explicitly map the corresponding memory buffers between
the CPU and the integrated GPU, using the OpenCL’s clEnqueueMapBuffer() function.

Figure 5 presents an illustration of the packet processing scheme in a hardware setup
of a commodity machine that contains one main processor packed in the same die with
an integrated GPU and one discrete high-end GPU. As previously explained, to process a
network packet on a discrete GPU, the steps are the following: (i) the DMA transaction
between the NIC and the main memory, (ii) the transfer of the packets to the I/O bus that
corresponds to the discrete GPU, (iii) the DMA transaction to the memory space of the
discrete GPU, (iv) the execution of the OpenCL processing kernel and (v) the transfer of the
results back to the host memory. Due to the PCIe interconnect inability to quickly handle
small data transfers, all data transfers are instructed to operate on large batches. The packet
processing on an integrated GPU follows a shorter path, since the integrated GPU and CPU
share the same physical memory space, which allows in-place data processing, resulting in
lower execution latency.

Processor cores

D
R 
A
M

Network 
adapter

Shared L3 cache

Integrated GPU

I/O hub

Discrete GPU

Figure 5. An illustration of the packet processing scheme in a hardware setup that contains one main
processor packed in the same die with an integrated GPU and one discrete high-end GPU.

Memory accesses can be critical to the overall performance sustained by our applica-
tion. GPUs execute code in a Single-Instruction-Multiple-Threads (SIMD) fashion, meaning
that at each cycle multiple threads execute the same instruction. Moreover, they offer
support for Single-Instruction-Multiple-Data (SIMD) execution when using vector data
types (such as the ushort16 that is able to store 16 16-bit long values), since the vectorized
code is translated to SIMD instructions [17]. Furthermore, OpenCL offers the so-called
local memory, which is a memory region that is shared between every work-item inside a
work-group. This local memory is implemented as an on-chip memory on GPUs, which
is much faster than the off-chip global memory. Hence, when we execute our engine on
GPUs, we can utilize this local memory in order to improve the overall performance.

3.3. Packet Processing Parallelization

The overall architecture of our intrusion detection system is presented in Figure 6. The
system utilizes one or several CPU worker threads, assigning each one to a single input
source (e.g., NIC).

Once a CPU thread receives a network packet, it forwards it to a receive buffer, called
RX batch (Figure 6). At this point, the receive buffer is filled with packets belonging to one
or several TCP flows. When the buffer is full, our system generates an execution batch with
the traffic contained in the receive buffer. The execution batch contains the payload sizes of
the received network packets, divided and ordered by the corresponding flows. In this way,
we transform the input traffic to series of payloads with each series containing information
of a single flow, ready to be processed by our pattern matching engine. Then, we transfer
the execution batch to the device’s memory address space. In the meantime, the receive
buffer continues to accepts incoming packets, avoiding packet losses.

We implement the pattern matching engine of our system as an OpenCL compute ker-
nel. Unlike other relevant works that follow a packet-per-thread processing
approach [9,10,18,19], we follow a flow-per-thread approach. This means that each thread
reads at least one network flow from the execution batch and then performs the processing
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(Figure 6). Whenever a batch of packets is received and forward for TCP flow ordering and
processing by the device, new packets are copied to another batch in a pipeline fashion.
Moreover, in order to fully utilize the SIMD capabilities of the hardware, we represent the
payload sizes in the execution buffer as unsigned short integers. In this way, we are able to
access the data using the ushort16 vector data type, as described above, in a row-major
order, being able to fetch information for 16 packets at once. During the processing, the
pattern matching kernel uses one ushort value as input, representing one payload size, at
each step in order to traverse the automaton, as described in Section 3.1.

CPU

W W W

Execution buffer

Input data Input data Input data

Device
T0: Flow0

T1: Flow1

T2: Flow2

T3: Flow3 T6: Flow6

T4: Flow4

T5: Flow5

T7: Flow7

Tx: FlowX

RX buffer

RX buffer

Pkt0 (F0), Pkt1 (F10), Pkt2 (F5), Pkt3 (F5), 
Pkt4 (F1), Pkt5 (F2), Pkt6 (F0), Pkt7 (F2), 
Pkt8 (F5), Pkt9 (F10), Pkt10 (F6), Pkt11 (F6), 
Pkt12 (F6), Pkt13 (F2)

Execution buffer

Flow0: Pkt0, Pkt6 
Flow1: Pkt4 
Flow2: Pkt5, Pkt7, Pkt13 
Flow5: Pkt2, Pkt3, Pkt8

Flow6: Pkt10, Pkt11, Pkt12

Flow10: Pkt1, Pkt9

Figure 6. Overview of the packet processing architecture. Each worker thread is assigned to a single
input source, transferring the packets into the RX buffer. The RX buffer continuously receives packets,
copying its contents to the execution buffer, where the packets are divided into flows, ordered and
copied to the device’s memory address space for processing. Each compute kernel thread is assigned
to a single flow.

If a signature is identified, the engine reports the suspicious TCP flow identifier,
packed with the packets that matched the signature—using the first and the last packet
contained in the signature, together with the signature identifier. We encode this informa-
tion using four ushort values for each TCP flow that is identified as suspicious. In this
way, we minimize the amount of data that need to be transferred back from the device
to the host’s DRAM. Moreover, in cases where an execution batch does not contain any
suspicious flows, the engine does not need to perform any other memory transfers except
for initially transferring the data for processing. Finally, in order to provide support for
even further analysis, we keep a copy of the packet payload and metadata to the host’s
memory until their processing in the GPU has finished so their payloads can be examined
in combination with the information provided by the engine.

4. Evaluation

In this section, we evaluate this work in two parts. First, we evaluate the effectiveness
of the generated signatures, while, in the following paragraphs, we present the performance
results of the implemented intrusion detection engine. We chose to use a fraction of the
UNSW-NB15 dataset [13] (i.e., “Exploits”, “Reconnaissance” and “DoS” attacks) to evaluate
our methodology and the signatures that it produced. We select these three categories (nine
categories in total) since they concentrate an important fraction of the network flows that
are included in the dataset (more than 60% of the total flows).

4.1. Signature Quality

In this section, we demonstrate the expressiveness and effectiveness of the proposed
signature specification by generating pattern signatures for a set of malicious activities,
evaluating their accuracy. We use 40% randomly chosen flows from the ground-truth
dataset as a reference, and the remaining 60% for the evaluation. While the typical split is
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70% for training and 30% for testing, we stress the effectiveness of our methodology using
only a 40% of the data for training.

In order for the TCP protocol to deliver data reliably, it provides a set of mecha-
nisms to detect and avoid unpredictable network behavior, like packet loss, duplication, or
reordering. In our methodology, we choose to discard packets that do not offer substan-
tial information to the flow, like re-transmitted packets, focusing entirely on processing
packet metadata. Tables 4–6 show the resulting true positive rates (TPR) for different
attack types found into the ground truth dataset. Each traffic trace in the test dataset
contains a combination of malicious and benign traffic (labeled). When a signature reports
malicious activity, we compare it with the actual category of the flow (malicious or be-
nign). If the activity is correctly reported as malicious, then the TP counter is increased.
Otherwise, we have a false positive (FP). The true positive rates, as presented in Tables 4–6,
show the effectiveness of each signature according to the signature’s length. More specifi-
cally, the reported true positive rates indicate that the signature length can significantly
affect the signature effectiveness. For instance, short signatures result in higher TPR. In
some cases, however, a short signature (that results in a high TPR) is possible to introduce
the trade-off of resulting in a high FDR as well. The false discovery rates (False discovery
rate can be calculated as FDR = FP/(TP+FP)) , as presented in Tables 7–9, present the
percentage of signatures that falsely reported malicious activity. To measure the FDR, we
search for the same signatures (as in the previous experiment) against benign traffic.

Table 4. Resulting true positive rate (TPR) of different types of signatures against the tested traffic.
Signatures and traffic are part of the attack samples from the “Exploits” category. The signatures are
generated after a combination of packet direction and packet payload size.

Packet Sequence Length

Direction 4 6 8 10 12

Source→ Destination 100% 93% 69% 63% 54%

Destination→ Source 100% 55% 37% 30% 30%

Source↔ Destination 100% 100% 97% 74% 61%

Table 5. Resulting true positive rate (TPR) of different types of signatures against the tested traffic.
Signatures and tested traffic are part of the attack samples from the “Reconnaissance” category.
The signatures are generated after a combination of packet direction and packet payload size.

Packet Sequence Length

Direction 4 6 8 10 12

Source→ Destination 100% 89% 89% 89% 87%

Destination→ Source 100% 98% 74% 70% 68%

Source↔ Destination 100% 100% 89% 86% 82%

Table 6. Resulting true positive rate (TPR) of different types of signatures against the tested traffic.
Signatures and tested traffic are part of the attack samples from the “DoS” category. The signatures
are generated after a combination of packet direction and packet payload size.

Packet Sequence Length

Direction 4 6 8 10 12

Source→ Destination 100% 61% 49% 44% 10%

Destination→ Source 100% 50% 26% 14% 13%

Source↔ Destination 100% 100% 72% 27% 15%
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Table 7. Resulting false discovery rate (FDR) of different types of signatures against part of the
benign traffic. Signatures are part of the attack samples from the “Exploits” category. The signatures
are generated after a combination of packet direction and packet payload size.

Packet Sequence Length

Direction 4 6 8 10 12

Source→ Destination 0.8% 0.7% 0.6% 0.2% 0.1%

Destination→ Source 0.7% 0.5% 0.05% 0% 0%

Source↔ Destination 0.8% 0.8% 0.6% 0.2% 0%

Table 8. Resulting false discovery rate (FDR) of different types of signatures against part of the
benign traffic. Signatures are part of the attack samples from the “Reconnaissance” category. The
signatures are generated after a combination of packet direction and packet payload size.

Packet Sequence Length

Direction 4 6 8 10 12

Source→ Destination 62% 0.9% 0.7% 0.3% 0%

Destination→ Source 65% 15% 0.1% 0.5% 0.3%

Source↔ Destination 63% 63% 0.11% 0.1% 0%

As it occurs from our results, the FDR rates for the “Exploits” category are low,
especially for short signatures, resulting in false discovery rates below 1%. In the “Re-
connaissance” category, short signatures result in unacceptable false discovery rates.
However, signatures of 8, 10, or 12 packets per sequence, in the same category, result in
balanced rates between true positives and false discovery. As it occurs from Tables 6 and 9,
signatures generated to identify DoS attacks perform poorly, both for TPR and FDR. This
could potentially prove our claim that building expressive and effective signatures is
highly challenging. As part of our future work, we plan to include more packet meta-
data in the signature generation phase, except for packet payload sizes and direction.
Building signatures that present a balanced behavior, both in terms of true and false
positives, is probably the optimal solution; however, it is not a trivial procedure.

Table 9. Resulting false discovery rate (FDR) of different types of signatures against part of the
benign traffic. Signatures are part of the attack samples from the “DoS” category. The signatures are
generated after a combination of packet direction and packet payload size.

Packet Sequence Length

Direction 4 6 8 10 12

Source→ Destination 62% 43% 30% 21% 18%

Destination→ Source 65% 15% 10% 0.5% 0.3%

Source↔ Destination 63% 63% 27% 0% 0%

In the same tables, we present the results while using different kinds of packet meta-
data; instead of only using the packet payload length as part of the signature, we also use
the packet direction (i.e., source to destination, destination to source, and bi-directional).
As it occurs, signatures that also indicate the direction result in high true positive rates.

Apparently, signatures’ effectiveness can be further improved to produce less false
positives, while keeping the true positive rates high. Taking into account more packet
metadata, except for packet payload length and direction, is one way to accomplish this.
For instance, more packet and flow metadata could strengthen the results for cases like the
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DoS attack detection (Tables 6 and 9). However, in order to implement a simple, flexible
and efficient intrusion detection engine (in terms of performance), we choose to generate
and test signatures using only the packet payload length and direction.

At this point, we want to stress the fact that the generated signatures are strongly
affected by the ground-truth dataset used, which contains the network traffic traces with the
malicious and benign activity. Being highly dependent on a rich ground-truth dataset for
signature generation, we plan to experiment with more and diverse datasets (for signature
generation) and test them against real network traffic environments, in the future.

4.2. Performance Micro-Benchmarks

For the performance evaluation of our implementation, we use a commodity high-end
machine. The hardware setup of our machine includes an Intel i7-8700K processor with six
cores that operate at 3.7 GHz with hyper-threading enabled, providing us with 12 logical
cores, configured with 32 GB RAM. The main processor is packed with an Intel UHD
Graphics 630 integrated GPU. In addition, we use a NVIDIA GeForce GTX 980 GPU. Our
testbed system runs Arch Linux 4.19.34-1-lts, and we use the Intel OpenCL 2.1 SDK for
the Intel devices (i.e., the UHD Graphics 630 GPU and the Intel i7-8700K CPU) and the
OpenCL SDK from the NVIDIA CUDA Toolkit 10.2.120 for the NVIDIA GTX 980 GPU.
At this stage, we only perform offline traffic processing, meaning that the application
reads the traffic from memory; thus, for the performance evaluation, we focus on micro-
benchmarks in order to present the throughput and latency of the engine’s execution. To
measure the performance capabilities of the engine, we used two sets of traffic traces:
(i) one set with fully benign etwork flows and (ii) one set with 90% benign network flows
and 10% malicious network flows. The malicious network flows contain packet sequences
that lead the signatures to report an intrusion event. Since the engine of the intrusion
detection system processes batches of network flows (not one flow at a time, but numerous
flows in parallel), we performed numerous performance measurements using different
number of flows per batch batch. The packet sizes that were contained in each flow were
varying, but fixed per flow.

Figure 7 presents the automaton size and compilation time, while Figures 8 and 9
illustrate the performance achieved by the pattern matching engine in terms of process-
ing throughput and latency, respectively. The performance results that are presented in
Figures 8 and 9 display the median values occurring after 30 runs per configuration.

4.2.1. Automaton Properties

To present our automaton’s characteristics, i.e., the automaton size and the compilation
time, we generate signature sets out of varying packet sequences, each time increasing the
number of signatures and the packet sequence length. Figure 7a presents the size of the
automaton in regard to different signature sets. More specifically, we present the size of
our automaton, using 500, 1K, 5K, 10K, and 50K randomly generated patterns of sequence
length 6, 8, 10, and 12 packets; for example, in Figure 7a, the automaton generated from
10,000 signatures, where each signature resembles a sequence of 10 packets, is around
1.5 GB. Figure 7b presents the compilation time of the automaton, again, depending on the
same signature sets. As expected, increasing the packet sequence length (even with only
a difference of two packets) can significantly affect the automaton size and compilation
time. Discrete GPUs have dedicated memory with limited capacity (currently up to 12 GB),
since they do not share the same physical address space with the CPU. In hardware setups
that utilize discrete GPUs for processing, having small automata is crucial; in comparison
to setups, where memory resources are sufficient (i.e., an integrated GPU that shares the
same physical address space with the CPU). The compilation time of the automaton does
not affect the end-to-end performance negatively, since the compilation happens offline
and only once.

From the dataset that we used, we extracted a maximum of 1500 signatures when
the sequence size was 12 packets—however, we present how our automaton construction
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technique performs (in terms of memory and processing time) for a larger number of
signatures.
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Figure 7. Automaton size and compilation time using different combinations of patterns and pattern
sizes. (a) Automaton size; (b) Automaton compilation time.

4.2.2. Throughput

Figure 8 presents the performance achieved by our pattern matching engine using
different many-core hardware architectures. More specifically, we show the throughput
sustained by (i) the discrete GTX 980 GPU (Figure 8a), (ii) the Intel UHD Graphics 630
integrated GPU (Figure 8b), and (iii) the Intel i7-8700K CPU (Figure 8c), executing the
pattern matching engine of our intrusion detection solution with 1000 signatures of varying
lengths. In Figure 8, the color-filled bars indicate the performance achieved by the pattern
matching engine when the selection of (i) signatures and (ii) input results to a computation-
ally loaded condition. In the figure, we present the worst-case scenario, where we have
full contamination of the traffic. White-filled bars with borders indicate the performance
achieved in a computationally relaxed condition (i.e., less than 10% infected traffic), which
is the most realistic scenario. We present the throughput using different packet batch
sizes. In general, when we use discrete GPUs, increasing the batch size results in better
sustainable throughput. Since, typically, the discrete GPU and the CPU communicate over
the PCIe bus, and they do not share the same physical address space, it is preferable that all
data transfers operate on fairly large chunks of data, due to the PCIe interconnect inability
to handle small data transfers efficiently. The discrete GPU performs with up to 43 Gbps
throughput for 10% traffic infection and 37 Gbps throughput for 100% malicious traces.
The integrated GPU, which is a less powerful device than the GTX 980 GPU, performs with
up to almost 30 Gbps throughput. Executing on the integrated GPU results in a sufficient
performance throughput, since expensive memory copies can be prevented. Thus, we
also present the throughput across different batch sizes. Unlike GPUs, the main processor
performs better for smaller batch sizes, resulting in a maximum throughput of 85 Gbps.



Sensors 2021, 21, 1140 14 of 21

 0

 10

 20

 30

 40

 50

16k 32k 64k 128k

T
h
ro

u
g
h
p

u
t 

(G
b
it

/s
)

Number of flows

(a)

(b)

(c)

Figure 8. Throughput of our pattern matching engine using a discrete GPU, an integrated GPU and
a CPU. Color-filled bars indicate the performance achieved by the pattern matching engine when
the selection of (i) signatures and (ii) input results in a computationally loaded condition (i.e., 100%
malicious traffic), while the white-filled bars with borders indicate the performance achieved in
a computationally relaxed condition (i.e., less than 10% malicious traffic). (a) Throughput of the
intrusion detection engine using the discrete GPU.; (b) Throughput of the intrusion detection engine
using the integrated GPU.; (c) Throughput of the intrusion detection engine using the CPU.

4.2.3. Latency

Through the performance evaluation, it is apparent that, even though discrete high-
end GPUs offer high performance rates, the end-to-end performance suffers from the
expensive memory copies between the host and the device. In the case of the integrated
GPU, we can take advantage of the satisfying computational performance with very low
latency in small packet batches, as shown in Figure 9. In Figure 9, the color-filled bars
indicate the performance achieved by the pattern matching engine when the selection of
(i) signatures and (ii) input, results in a computationally relaxed condition. In the figure,
we present the most realistic scenario, where we have less than 10% malicious traffic.
White-filled bars with borders indicate the performance achieved in a computationally
loaded condition (i.e., 100% malicious traffic), which is the most worst-case scenario.
We present the latency using different packet batch sizes. The discrete GPU introduces an
almost stable latency across different batch sizes, close to 2 ms. Executing on the integrated
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GPU results in higher latency records, up to 5 ms. Executing on the main processor adds
very low latency—especially for small batch sizes— making it ideal for real-time, latency-
intolerant environments. Unfortunately, since there is no equivalent GPU-accelerated
implementation for a signature-based intrusion detection engine that searches for packet
metadata sequences, we were not able to compare our engine’s performance to another,
as a baseline.
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Figure 9. Latency of our pattern matching engine using a discrete GPU, an integrated GPU and a
CPU. Color-filled bars indicate the performance achieved by the pattern matching engine when the
selection of (i) signatures and (ii) input results in a computationally relaxed condition (i.e., less than
10% malicious traffic), while the white-filled bars with borders indicate the performance achieved in a
computationally loaded condition (i.e., 100% malicious traffic). (a) Latency of the intrusion detection
engine using the discrete GPU.; (b) Latency of the intrusion detection engine using the integrated
GPU.; (c) Latency of the intrusion detection engine using the CPU.

5. Related Work

In this section, we discuss the state-of-the-art in the domain of network traffic in-
spection and intrusion detection. Table 10 presents a comparison between this and other
related works. In the table, ticks signify that a specific work addresses the corresponding
feature/approach, dashes signify that a specific work addresses the corresponding fea-



Sensors 2021, 21, 1140 16 of 21

ture/approach, and, finally, circles signify that it is not clear whether the feature/approach
is addressed—or to what extent.

Table 10. Comparison of recent network traffic inspection and intrusion detection works.

Offline
Analysis

Encrypted
Traffic

Online
Inspection

Performance
Efficiency Details

Snort [20],
Suricata [21],
Zeek/Bro [22]

X ◦ X ◦
Signature/Anomaly-based,

Payload inspection,
Network security

Gnort [23],
MIDeA [9] ◦ — X X

Signature-based,
Payload inspection
Network security,
GPU-acceleration

Conti et. al [5],
Taylor et. al [24],

Profit [7]
X X — —

ML-based,
Network analytics

OTTer [6] X X X X
Signature-based,
Pattern mining,

Network analytics

Profit [7] X X — —
ML-based,

Network analytics

Kitsune [25] X X X —
Neural Network,
Network security

HeaderHunter X X X X
Signature-based,
Network security,
GPU-acceleration

Network intrusion detection systems have become very powerful tools in the hands
of network administrators and security experts over the past decades, assisting in the
detection and prevention of a wide range of attacks. Popular NIDS solutions like Snort [20]
and Suricata [21] utilize pattern matching and regular expressions in order to analyze
network traffic while Zeek/Bro [22] utilizes scripts that allow easier automation. The
research community has also put effort into improving the performance of NIDS using
either commodity hardware, such as GPUs [9,23,26–28] and parallel nodes [29,30], or spe-
cialized hardware, such as TCAMs, ASICs, and FPGAs [31–35]. However, the majority
of these works are able to process network traffic that is unencrypted, since they extract
meaningful information from network packet payload content. More recently, many works
focus on machine learning and deep learning techniques, rather than traditional pattern
matching [36,37]. In their work, Sommer and Paxson [38] proposed the use of machine
learning for intrusion detection and provide useful guidelines. Shone et al. [39] pro-
pose a system that combines deep learning techniques to provide intrusion detection.
Tang et al. [40] present a deep learning approach for flow-based anomaly detection in
SDN environments, while Niyaz et al. [41] utilize deep learning in order to detect DDoS
attacks in such environments. Anderson et al. [42] compare the properties of six differ-
ent machine learning algorithms for encrypted malware traffic classification. Moreover,
Amoli et al. present a real-time unsupervised NIDS, able to detect new and complex attacks
within encrypted and plaintext communications [43]. Kitsune [25] is a NIDS, based on
neural networks, and designed for the detection of abnormal patterns in network traffic.
It monitors the statistical patterns of recent network traffic and detects anomalous patterns.
These techniques focus on identifying malicious behavior in the network, examining the
characteristics of the underlying traffic, using exclusively machine learning approaches.
BlindBox [44] performs deep-packet inspection directly on the encrypted traffic, utiliz-
ing a new protocol and new encryption schemes. Taleb et al. [45,46] propose solutions
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based on per-packet inspection of the header information in order to identify misuses
in encrypted protocols. On the other hand, iDeFEND [47] is a framework for inspecting
encrypted network data without breaking the security model of end-to-end encryption.
Goh et al. [48,49] propose mirroring the traffic to a central IDS, able to decrypt the traffic
and perform deep packet inspection, while ProtoMon [50] is based on detection of protocol
misuse. Hellmons et al. proposed SSHCure [51], a flow-based intrusion detection system
for SSH attacks, while Foroushani et al. [52] propose an approach for detecting anomaly
behavior in encrypted access with SSH2 protocol. Many other research and commercial
solutions focus on inspection of encrypted network traffic mostly for network analyt-
ics [5,24,53]. Lotfollahi et al. [53] present a system that is able to handle both traffic charac-
terization and application identification by analyzing encrypted traffic with deep learning.
Conti et al. [5,54] and Taylor et al. [24,55] propose systems that aim to identify user actions
and smartphone apps by analyzing Android encrypted network traffic. OTTer [6] is a
scalable engine that identifies fine-grained user actions in OTT mobile applications even
in encrypted network traffic. Moreover, Rosner et al. [7] present a black-box approach for
detecting and quantifying side-channel information leaks in TLS-encrypted network traffic.
Symantec offers the Encrypted Traffic Management (ETM) tool [56] that provides visibility
into encrypted traffic by decrypting part of the traffic; however, this is a technique that
could cause privacy violations. Cisco’s Encrypted Traffic Analytics (ETA) is a proprietary
solution [57] for businesses that offers traffic security and analytics by utilizing various
features of the network traffic, extracted from other Cisco technologies.

To compare this work with the state-of-the-art, it is very common to encounter works
that examine the feasibility of identifying the network traffic class, while encrypted (e.g., a
webpage, a mobile application or some malicious activity). As already stressed, all these
works focus on machine learning techniques that signify the network-related characteristics
that indicate this specific class. However, the majority does not focus on providing a system
implementation able to monitor and inspect network traffic in real time. In this work,
we aim to advance the state-of-the-art offering an intrusion detection implementation
that combines the following: (i) we generate signatures from packet metadata, found
exclusively in network packet headers—the information that is available for processing
in encrypted network traffic, (ii) we implement a signature-based intrusion detection
engine using an extended version of the Aho–Corasick algorithm to support integers—
these integers describe packet size sequences, (iii) we enhance our system’s performance
using accelerators.

Traffic Analysis Resistance

As already discussed, properties of network traffic that remain observable after en-
cryption, namely packet sizes and timing, can reveal surprising information about the
traffic’s contents. While there are some legitimate uses for encrypted traffic analysis, these
techniques raise important questions about the privacy of encrypted communications.
A typical approach to mitigate such threats is to pad packets to uniform sizes or to send
packets at fixed timing intervals. Wright et al. propose a method for thwarting statisti-
cal traffic analysis algorithms by morphing one class of traffic to look like another [58].
Through the use of convex optimization techniques, authors show how to modify pack-
ets in real-time to reduce the accuracy of a variety of traffic classifiers while incurring
much less overhead than padding. The altered data are then sent to the network stack
encrypted and then sent across the network [58]. AnonRep [59] offers anonymity and
privacy guarantees for reputation and voting systems. TARN [60] randomizes IP addresses,
while TARANET [61] employs packet mixing and splitting for constant-rate transmission.
Luo et al. [62] designed the HTTPOS fingerprinting defense at the application layer.
HTTPOS acts as a proxy accepting HTTP requests and obfuscating them before allowing
them to be sent. It modifies network features on the TCP and HTTP layer such as packet
size, packet time, and payload size, along with using HTTP pipelining to obfuscate the
number of outgoing packets. They showed that HTTPOS was successful in defending
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against a number of classifiers. Dyer et al. [63] combine fixed packet sizes and constant
rate traffic. Frolov et al. [64] propose uTLS that mimics other popular TLS implementations
to prevent censorship. Walkie-Talkie molds burst sequences so that sensitive and non-
sensitive pages look the same [65]. There have been efforts to create messaging protocols
that provide anonymity and privacy guarantees in the face of traffic analysis [66–69].

Dissent [66] and Riposte [67] are systems that provide strong guarantees by using
message broadcasting. They protect packet metadata but may be unattractive due to
scalability issues. Herd [70] is another system that tackles the case of anonymity for VoIP
calls, by addressing, like the former proposals, some of the limitations of the more general-
purpose Tor anonymity network [71]. Vuvuzela [68] and Atom [69] employ differential
privacy to inject noise into observable metadata.

In this work, we present the implementation of a network intrusion detection system
that is effective even in encrypted networks. When it comes to intrusion detection, being
able to accurately report a suspicious event is crucial. Hence, we believe that typical string
pattern matching for packet payload content inspection should be integrated with our pro-
posed packet metadata matching for more mature and effective intrusion detection systems,
even if techniques like encryption and traffic analysis resistance can circumvent them.

6. Conclusions

Traditional traffic monitoring processes, such as intrusion detection and prevention
tools, use deep packet inspection techniques that often focus on examining the packet
payload contents to report certain activities, resulting in poor adaptiveness for encrypted
network traffic. In this work, we propose a fast signature-based intrusion detection engine
tailored for encrypted network traffic. Specifically, this work is divided into two parts:
(i) the signature generation and (ii) the implementation of the intrusion detection engine.
The signatures are generated using only network packet metadata, strictly extracted from
packet headers, an approach tailored for encrypted networks. For the engine implemen-
tation part, we use OpenCL to allow uniform execution across GPU accelerators and a
high-end CPU. Using GPUs, the intrusion detection engine can perform with up to 37 Gbps
throughput in the worst-case scenario (100% malicious traffic) and with up to 43 Gbps
throughput in a computationally relaxed condition (less than 10% malicious traffic). In
addition, we achieved a performance of up to 85 Gbit/s throughput using a commodity
high-end CPU. As part of our future work, we plan to include other network packet meta-
data in the signature generation phase (besides packet payload sizes and direction) and
investigate how they could reveal the encrypted network nature even in traffic analysis
resistant implementations.
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