Dataset Open Access
Sarajcev, Petar; Kunac, Antonijo; Petrovic, Goran; Despalatovic, Marin
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.4521886"> <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/> <dct:type rdf:resource="http://purl.org/dc/dcmitype/Dataset"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.4521886</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.4521886"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Sarajcev, Petar</foaf:name> <foaf:givenName>Petar</foaf:givenName> <foaf:familyName>Sarajcev</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>University of Split, FESB</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Kunac, Antonijo</foaf:name> <foaf:givenName>Antonijo</foaf:givenName> <foaf:familyName>Kunac</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>University of Split, FESB</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Petrovic, Goran</foaf:name> <foaf:givenName>Goran</foaf:givenName> <foaf:familyName>Petrovic</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>University of Split, FESB</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Despalatovic, Marin</foaf:name> <foaf:givenName>Marin</foaf:givenName> <foaf:familyName>Despalatovic</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>University of Split, FESB</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>Power System Transient Stability Assessment Simulations Dataset - IEEE New England 39-bus test case</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued> <dcat:keyword>power system</dcat:keyword> <dcat:keyword>transient stability</dcat:keyword> <dcat:keyword>machine learning</dcat:keyword> <dcat:keyword>deep learning</dcat:keyword> <dcat:keyword>New England test case</dcat:keyword> <dcat:keyword>MATLAB/Simulink</dcat:keyword> <dcat:keyword>PMU signals</dcat:keyword> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-02-09</dct:issued> <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/> <owl:sameAs rdf:resource="https://zenodo.org/record/4521886"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/4521886</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.4521885"/> <owl:versionInfo>1.0</owl:versionInfo> <dct:description><p>This dataset contains phasor measurements (PMU-type) signals from the <strong>IEEE New England 39-bus power system</strong> test case network, which are generated from a large corpus of systematic <strong>MATLAB&reg;/Simulink</strong> electro-mechanical transients simulations. It was prepared to serve as a convenient and open database for experimenting with different types of <strong>machine learning</strong> (including deep learning) techniques for <strong>transient stability assessment</strong> (TSA) of electrical power systems. A dataset contains time-domain signals from 9360 simulations. Different load and generation levels of the New England 39-bus benchmark power system are systematically covered, as well as all three major types of short-circuit events (three-phase, two-phase and single-phase faults) in all parts of the network.&nbsp;The consumed power of the network was set to 80%, 90%, 100%, 110% and 120% of the basic system load levels (for different system load levels, both generation and loads are scaled by the same ratio). The short-circuits are located on the busbar or on the transmission line (TL). When they are located on a TL, it was assumed that they can occur at 20%, 40%, 60%, and 80% of the line length. Timing of the fault occurrences takes into the consideration a moment on the instantaneous sinusoidal reference voltage. The observation period of each simulation was set at 3 seconds and signals are sampled at 1/60 s resolution. Many different machine electrical and mechanical (rotor and stator quantities), as well as network (three-phase currents and voltages), time-domain signals are obtained from simulations with a PMU-type resolution.</p> <p>A <strong>dataset</strong> is a collection of MAT files (.mat) which can be imported into the MATLAB&reg; Workspace.</p> <ul> <li>The database consists of 9360 simulations (15x624 simulations) separated into &quot;.mat&quot; files.</li> <li>Every database or packet of 624 simulations has a different nickname. Nickname is an abbreviation for a specific condition that has been observed (i.e. simulated) in that specific case.</li> <li>Filenames reveal network conditions. Load denotes load level of the system in % and SC denotes type of short-circuit where 1, 2 and 3 are single-phase, double-phase and three-phase short-circuit, respectively. For example, Load_80_SC_1_OUTPUT.mat filename has the following meaning: Load_80 means that the consumed power was set to 80% of the basic system load level and SC_1 means that a single-phase short circuit has been observed.</li> </ul> <p><strong>List of variable names</strong>:<br> Angle_Vabc -- Bus Phase Angles for phase A, B and C (repetitively for different buses)<br> EFD&nbsp; -- EFD in PU<br> LA -- Power Load Angle in degrees<br> Magnitude_Vabc -- Bus Voltage Magnitudes for phase A, B and C (repetitively for different buses)<br> P -- Electrical Power in PU<br> Pe -- Generator Active Power in PU<br> Qe -- Generator Reactive Power in PU<br> SI_id -- Stator d-component Current in PU<br> Si_iq -- Stator q-component Current in PU<br> STOP -- Transient Stability Index (TSI), 0 - in synchronism, 1 - out of synchronism<br> SV_vd -- Stator d-component Voltage in PU<br> SV_vq -- Stator q-component Voltage in PU<br> Vt -- Stator Voltage in PU<br> d_theta -- Rotor Angle Deviation in radians<br> t -- Simulation time, i.e. sampling time<br> theta -- Rotor Mechanical Angle in degrees<br> w -- Rotor Speed in PU</p> <p><strong>License</strong>:<strong> </strong>Creative Commons CC-BY</p> <p><strong>Disclaimer</strong>: This dataset is provided &quot;as is&quot;, without any warranties of any kind.</p></dct:description> <dct:description>Funding acknowledgement: Project IP-2019-04-7292 - Power system disturbance simulator and non-sinusoidal voltages and currents calibrator, funded by the Croatian Science Foundation, Republic of Croatia.</dct:description> <dct:description>{"references": ["Sarajcev, P.; Kunac, A.; Petrovic, G.; Despalatovic, M. Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble. Energies 2021, 14, 3148. https://doi.org/10.3390/en14113148"]}</dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dcat:distribution> <dcat:Distribution> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4521886"/> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4521886"/> <dcat:byteSize>3776237074</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/4521886/files/Waveforms.rar"/> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 618 | 618 |
Downloads | 299 | 299 |
Data volume | 1.1 TB | 1.1 TB |
Unique views | 536 | 536 |
Unique downloads | 185 | 185 |